
Devi et al. Advances in Difference Equations        (2020) 2020:300 
https://doi.org/10.1186/s13662-020-02729-3

R E S E A R C H Open Access

On stability analysis and existence of
positive solutions for a general non-linear
fractional differential equations
Amita Devi1, Anoop Kumar1, Dumitru Baleanu2,3,4* and Aziz Khan5

*Correspondence:
dumitru@cankaya.edu.tr
2Department of Mathematics,
Faculty of Art and Sciences, Cankaya
University, Cankaya, Turkey
3Institute of Space Science,
Magurele-Bucharest,
Magurele-Bucharest, Romania
Full list of author information is
available at the end of the article

Abstract
In this article, we deals with the existence and uniqueness of positive solutions of
general non-linear fractional differential equations (FDEs) having fractional derivative
of different orders involving p-Laplacian operator. Also we investigate the
Hyers–Ulam (HU) stability of solutions. For the existence result, we establish the
integral form of the FDE by using the Green function and then the existence of a
solution is obtained by applying Guo–Krasnoselskii’s fixed point theorem. For our
purpose, we also check the properties of the Green function. The uniqueness of the
result is established by applying the Banach contraction mapping principle. An
example is offered to ensure the validity of our results.
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1 Introduction
Fractional calculus concerns the applications of derivatives and integrals of arbitrary or-
der. During the last few decades, it received great attention because of its various appli-
cations in diverse scientific fields. Arbitrary-order models are more flexible than integer-
order models. FDEs arise in numerous scientific and engineering fields such as physics,
polymer rheology, geophysics, biophysics, aerodynamics, capacitor theory, biology, non-
linear oscillation of earthquake, control theory, blood flow phenomena, viscoelasticity,
and electrical circuits. For the exhaustive study of its applications, we refer to extensive
work [1–7]. The fundamental differences between exponential decay, the power law, the
Mittag-Leffler law and some possible applications in nature are presented in [8, 9].

Nowadays, the existence and uniqueness (EU) of solutions for different type of FDEs
is a field of intensive research. Here, we introduce some important and recent work of
several researcher about the existence of a positive solution (EPS) of different classes of
FDEs. For example, the EU results for Dirichlet and mixed problems of singular FDEs with
the Riemann–Liouville sense of fractional derivative were investigated by Agarwal et al.
[10, 11]. Baleanu et al. in [12] established the existence of a solution on partially ordered
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Banach spaces for a non-linear FDEs. Vong studied the singular FDEs involving non-local
type boundary conditions in [13] by using fixed point techniques. For more details of EU of
different types of FDEs with different types of fractional derivatives, see [14–35]. Numer-
ical solutions for the fractional Fisher’s type equations involving the Atangana–Baleanu
fractional derivative by methods of spectral collocation are in [26]. As of lately, some au-
thors investigated the FDEs with p-Laplacian operator by diverse types of mathematical
techniques. For instance, Khan et al. investigated the existence criterion for solutions for
FDEs involving the φp-Laplacian operator in [36]. The EU of results for FDEs with φp-
Laplacian operator are analyzed by Chuanzhi Bai in [37] via fixed point theorems. Also
we present the Green function’s properties and two examples to illustrate the results. The
EPS for FDEs with the φp-Laplacian operator is studied by Tian et al. [38] and EPSs are
obtained with the help of a monotone iterative method. For more EU results for FDEs with
a p-Laplacian operator one may refer to [39–42]

Recently, a great interest has been shown in the study of HU stability of non-linear FDEs
with different type of boundary conditions. By HU stability we mean that there exists an
exact solution very close to the approximate solution of a FDE and that the error can be cal-
culated. The EU of solutions and HU stability FDEs with p-Laplacian operator and ABC-
fractional derivative involving a spatial singularity is derived by Khan et al. in [43] using the
well-known Guo–Krasnoselskii theorem. Khan et al. [44] discussed the analytical study of
existence and stability results of a singular non-linear FDEs with φp-operator involving
fractional integral and differential boundary conditions. The EU and HU stability of solu-
tions for a coupled system of FDEs involving the derivative in Caputo’s sense are proved
by Khan et al. [45] using a Leray–Schauder-type fixed point theorem and topological de-
gree theory. Li et al. investigated the HU stability of FDEs in [46] and also presented an
example to illustrate their result. Stability and EU of solutions for the fractional order HIV
model were introduced by Khan et al. in [47]. Existence and stability of solutions for sin-
gular delay FDEs with fractional integral initial conditions by using the Green function
and the fixed point theorem were established by the Khan et al. in [48]. For more details
of stability analysis, see [49–57].

Motivated by the above work, we introduce the EU and HU stability results, for non-
liner FDEs involving Caputo fractional derivatives of distinct orders with φ∗

P Laplacian
operator:

⎧
⎪⎪⎨

⎪⎪⎩

cDζ φ∗
p[cDσ (z(t) –

∑m
i=1 λi(t))] = –ψ∗(t, z(t)), t ∈ [0,1],

φ∗
p[cDσ z(t) –

∑m
i=1 λi(t)]|t=0 = 0, z(0) =

∑m
i=1 λi(0),

z′(1) =
∑m

i=1 λ′
i(1), zj(0) =

∑m
i=1 λ

j
i(0) for j = 2, 3, 4, . . . , n – 1,

(1.1)

where cDζ , cDσ denotes the derivative of fractional order ζ and σ in Caputo’s sense, re-
spectively, and ψ∗, λi(t) are continuous functions. The orders n – 1 < σ ≤ n, 0 < ζ ≤ 1
where n ≥ 4, ψ∗ ∈ L[0, 1] and φ∗

p(z) = |z|p–1z denotes the p-Laplacian operator and sat-
isfies 1

p
+ 1

q
= 1, (φ∗

p)–1 = φ∗
q . The rest of article is divided in four parts. Basic definitions

and desired lemmas are presented in Sect. 1 and properties of the Green functions are dis-
cussed in Sect. 2. The EU results are given in Sect. 3. HU stability is discussed in Sect. 4.
In Sect. 5, we introduce an example.

Here, we introduce certain definitions, desired lemmas and theorems, which are essen-
tial to find the main result.
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Definition 1.1 ([1]) For an integrable and real valued continuous function ψ∗ defined on
(0, +∞), the Riemann–Liouville integral of fractional order δ ∈R is defined as

Iδψ∗(y) =
1

Γ (δ)

∫ y

0
(y – x)δ–1ψ∗(x) dx, δ > 0.

Definition 1.2 ([1]) For an n-times continuously differentiable real valued function ψ∗

defined on (0, +∞), the Caputo derivative of fractional order δ ∈R (δ > 0) is defined as

cDδψ∗(y) =
1

Γ (n – δ)

∫ y

0
(y – x)n–δ–1(ψ∗)n(x) dx, n – 1 < δ < n, n = [δ] + 1,

where [δ] represents the greatest integer and the integral exists on the (0, +∞) interval.

Lemma 1.1 ([2]) Let σ ∈ (k – 1, k] and ψ∗(t) ∈ Ck–1, then

Iσ Dσ ψ∗(y) = ψ∗(y) + a0 + a1y + a2y2 + a3y3 + · · · + ak–1yk–1,

for the aj ∈R for j = 0, 1, 2, . . . , k – 1.

Theorem 1.2 ([58, 59], Guo–Krasnoselskii theorem) Consider Ω∗ to be a Banach space
and let a cone K∗ ∈ Ω∗. Assume that A∗

1 , A∗
2 are two bounded subsets of Ω∗ such that

0 ∈ A∗
1 , A∗

1 ⊂ A∗
2 . Then an operator G∗ : K∗ ∩ (A∗

2 \ A∗
1 ) −→ K∗, which is completely

continuous and satisfies

(
P∗

1

) ∥
∥G∗z

∥
∥ ≤ ‖z‖ if z ∈ K∗ ∩ ∂A∗

1 and
∥
∥G∗z

∥
∥ ≥ ‖z‖ if z ∈ K∗ ∩ ∂A∗

2 ,

or

(
P∗

2

) ∥
∥G∗z

∥
∥ ≥ ‖z‖ if z ∈ K∗ ∩ ∂A∗

1 and
∥
∥G∗z

∥
∥ ≤ ‖z‖ if z ∈ K∗ ∩ ∂A∗

2 ,

has a fixed point in K∗ ∩ (A∗
2 \ A∗

1 ).

Lemma 1.3 ([44, 45]) For the p-Laplacian operator φ∗
p , the following conditions hold true:

(1) If |γ1|, |γ2| ≥ σ > 0, 1 < p ≤ 2, γ1γ2 > 0, then

∣
∣φ∗

p(γ1) – φ∗
p(γ2)

∣
∣ ≤ (p – 1)σ p–2|γ1 – γ2|.

(2) If p > 2, |γ1|, |γ2| ≤ σ ∗ > 0, then

∣
∣φ∗

p(γ1) – φ∗
p(γ2)

∣
∣ ≤ (p – 1)

(
σ ∗)p–2|γ1 – γ2|.

2 Green function and properties
Theorem 2.1 Consider ψ∗ ∈ C[0, 1] satisfying the FDE with φ∗

p (1.1). Then, for ζ ∈ (0, 1]
and σ ∈ (n – 1, n], the FDEs (1.1) involving the φ∗

p Laplacian operator has a solution equiv-
alent to

z(t) =
m∑

i=1

λi(t) +
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds, (2.1)
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where the Green function Hσ (t, s) is defined by

Hσ (t, s) =

⎧
⎨

⎩

–(t–s)σ–1

Γ (σ ) + t (1–s)σ–2

Γ (σ–1) , 0 < s ≤ t < 1,

t (1–s)σ–2

Γ (σ–1) , 0 < t ≤ s < 1.
(2.2)

Proof Taking the integral operator Iζ on both sides (1.1) and using Lemma 1.1, Eq. (1.1)
becomes

φ∗
p

(

cDσ

[

z(t) –
m∑

i=1

λi(t)

])

= –Iζ
[
ψ∗(t, z(t)

)]
+ C0. (2.3)

From the condition φ∗
p(cDσ [z(t) –

∑m
i=1 λi(t)])|t=0 = 0, �⇒ C0 = 0.

Using the value of C0 = 0, then (2.3) becomes

φ∗
p

(

cDσ

[

z(t) –
m∑

i=1

λi(t)

])

= –Iζ
[
ψ∗(t, z(t)

)]
. (2.4)

Applying the q-Laplacian operator further on (2.4) we get the form

cDσ

[

z(t) –
m∑

i=1

λi(t)

]

= –φ∗
q

(
Iζ

[
ψ∗(t, z(t)

)])
. (2.5)

Again taking the integral operator Iσ to both sides of (2.5) and using Lemma 1.1, then (2.5)
becomes

z(t) –
m∑

i=1

λi(t) = –Iσ
(
φ∗

q

(
Iζ

[
ψ∗(t, z(t)

)]))
+ a0 + a1t + a2t2 + a3t3 + · · ·+ an–1tn–1, (2.6)

where aj ∈R for j = 0, 1, 2, . . . , n – 1.
Using the boundary conditions zj(0) =

∑m
i=1 λ

j
i(0) for j = 0, 2, 3, 4, . . . , n – 1, in (2.6),

�⇒ aj = 0 for j = 0, 2, 3, 4, . . . , n – 1. and z′(1) =
∑m

i=1 λ′
i(1), implies that a1 =

Iσ–1(φ∗
q (Iζ [ψ∗(t, z(t))]))|t=1

Putting the values of the constants ai in (2.6), we get

z(t) =
m∑

i=1

λi(t) +
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds, (2.7)

where Hσ (t, s) is defined in (2.2). �

Lemma 2.2 The Green function Hσ (t, s) defined in (2.2) satisfies the following conditions:
(B1) Hσ (t, s) > 0 ∀s, t ∈ (0, 1);
(B2) the function Hσ (t, s) is increasing and Hσ (1, s) = maxt∈[0,1] Hσ (t, s);
(B3) Hσ (1, s) ≥ tσ–1 maxt∈[0,1] Hσ (t, s) for t, s ∈ (0, 1).
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Proof To prove (B1), we take two cases ∀t, s ∈ (0, 1).
Case 1. For s ≤ t. As σ > 3, then

Hσ (t, s) =
–(t – s)σ–1

Γ (σ )
+ t

(1 – s)σ–2

Γ (σ – 1)

=
–tσ–1(1 – s

t
)σ–1

Γ (σ )
+ t

(1 – s)σ–2

Γ (σ – 1)

≥ –tσ–1(1 – s)σ–1

Γ (σ )
+ tσ–1 (1 – s)σ–2

Γ (σ – 1)
> 0. (2.8)

Case 2. When t ≤ s, we evaluate

Hσ (t, s) = t
(1 – s)σ–2

Γ (σ – 1)
> 0. (2.9)

From (2.8) and (2.9), it is proved that Hσ (t, s) > 0 ∀s, t ∈ (0, 1).
To prove the condition (B2), we assume that ∀s, t ∈ (0, 1).
Case 1. For s ≤ t. As σ > 3, then

∂

∂t
Hσ (t, s) =

–(t – s)σ–2

Γ (σ – 1)
+

(1 – s)σ–2

Γ (σ – 1)

=
–tσ–2(1 – s

t
)σ–2

Γ (σ – 1)
+

(1 – s)σ–2

Γ (σ – 1)

≥ –tσ–2(1 – s)σ–2

Γ (σ – 1)
+ tσ–2 (1 – s)σ–2

Γ (σ – 1)
> 0. (2.10)

Case 2. When t ≤ s, we find that

∂

∂t
Hσ (t, s) =

(1 – s)σ–2

Γ (σ – 1)
> 0. (2.11)

From Eqs. (2.10) and (2.11), it is shown that ∂
∂t

Hσ (t, s) > 0 ∀s, t ∈ (0, 1), consequently,
∂
∂t

Hσ (t, s) is an increasing function. Thus, we have for t ≥ s

max
t∈[0,1]

Hσ (t, s) =
–(1 – s)σ–1

Γ (σ )
+

(1 – s)σ–2

Γ (σ – 1)
= Hσ (1, s), (2.12)

and for s ≥ t

max
t∈[0,1]

Hσ (t, s) =
(1 – s)σ–2

Γ (σ – 1)
= Hσ (1, s). (2.13)

To prove the condition (B3), we assume that
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Case 1. For s ≤ t. As σ > 3, then

Hσ (t, s) =
–(t – s)σ–1

Γ (σ )
+ t

(1 – s)σ–2

Γ (σ – 1)

=
–tσ–1(1 – s

t
)σ–1

Γ (σ )
+ t

(1 – s)σ–2

Γ (σ – 1)

≥ –tσ–1(1 – s)σ–1

Γ (σ )
+ tσ–1 (1 – s)σ–2

Γ (σ – 1)

= tσ–1
(

–(1 – s)σ–1

Γ (σ )
+

(1 – s)σ–2

Γ (σ – 1)

)

= tσ–1Hσ (1, s). (2.14)

Case 2. For t ≤ s, we evaluate

Hσ (t, s) = t
(1 – s)σ–2

Γ (σ – 1)

≥ tσ–1 (1 – s)σ–2

Γ (σ – 1)
= tσ–1Hσ (1, s). (2.15)

Thus, by Eqs. (2.14) and (2.15), condition B3 is proved. �

3 Existence result
Now we prove our existence result by introducing the following conditions.

Let Ω∗ = C[0,1] be the Banach space containing all real valued functions defined on
[0,1], which are continuous and endowed with the ‖z‖ = maxt∈[0,1]{|z(t)| : z ∈ Ω∗}. Sup-
pose that K∗ ∈ Ω∗ is a cone of functions, which are positive and of the type K∗ = {z ∈
Ω∗ : z(t) ≥ tσ‖z‖, t ∈ [0,1]}. Let A∗(r) = {z ∈ K∗ : ‖z‖ < r}, ∂A∗(r) = {z ∈ K∗ : ‖z‖ = r}.
By using Theorem 2.1. Equation (1.1) is equivalent to

z(t) =
m∑

i=1

λi(t) +
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds. (3.1)

Let us define an operator G∗ : K∗ \ {0} → Ω∗ associated with problem (1.1), such that

G∗z(t) =
m∑

i=1

λi(t) +
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds. (3.2)

By using Theorem 2.1, the solution of FDE given by Eq. (1.1) is a fixed point z(t) of G∗ i.e.,

z(t) = G∗z(t). (3.3)

To obtain the existence result we need the following assumptions:
(R1) ψ∗(t, z(t)) : [0, 1] × (0, +∞) −→R

+ is a continuous function.
(R2) λi(t) : [0, 1] −→ R

+ are also continuous functions for each i = 1, 2, 3, . . . , m, with

m∑

i=1

λi(t)‖ ≤  < +∞.
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(R3) |ψ∗(t, z(t))| ≤ φ∗
p(Λ1|z(t)|l1 +Λ2) ∀t ∈ [0, 1], z ∈ Ω∗ where Λ1, Λ2 are positive con-

stants and l1 ∈ [0, 1].
(R4) |ψ∗(t, z) – ψ∗(t,υ)| ≤ L(|z – υ|) ∀L > 0, t ∈ [0,1], L > 0, z,υ ∈ Ω∗.

Theorem 3.1 Let us assume that conditions (R1)–(R3) are satisfied. Then G∗ is a com-
pletely continuous operator.

Proof For any z ∈ (A∗2(r)) \ A∗
1 (r)), using Lemma 2.2 and (3.2), we have

G∗z(t) =
m∑

i=1

λi(t) +
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

≤
m∑

i=1

λi(t) +
∫ 1

0
Hσ (1, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds, (3.4)

G∗z(t) =
m∑

i=1

λi(t) +
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

≥
m∑

i=1

λi(t) + tσ–1
∫ 1

0
Hσ (1, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds. (3.5)

From (3.4) and (3.5), we arrive at

G∗z(t) ≥ tσ–1∥∥G∗z(t)
∥
∥, t ∈ [0, 1]. (3.6)

This implies that G∗ : (A∗2(r)) \ A∗
1 (r)) → K∗.

Next, to show that G∗ is a continuous map, we prove that ‖G∗zn(t) – G∗z(t)‖ −→ 0 as
n −→ ∞; let us address

∥
∥G∗zn(t) – G∗z(t)

∥
∥

=

∣
∣
∣
∣
∣

m∑

i=1

λi(t) +
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, zn(ε)

)
dε

)

ds

–
m∑

i=1

λi(t) –
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

∣
∣
∣
∣
∣

≤
∫ 1

0

∣
∣Hσ (t, s)

∣
∣

∣
∣
∣
∣φ

∗
q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, zn(ε)

)
dε

)

ds

– φ∗
q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

∣
∣
∣
∣. (3.7)

By continuity of the function ψ∗, we have ‖G∗zn(t) – G∗z(t)‖ −→ 0 as n −→ ∞. This im-
plies that G∗ is a continuous map.

Now, we have to prove G∗ is uniformly bounded on (A∗2(r)) \ A∗
1(r).
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By (3.2) and using (R2R3), for any t ∈ [0, 1], we get

∥
∥G∗z

∥
∥

=

∣
∣
∣
∣
∣

m∑

i=1

λi(t) +
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

m∑

i=1

λi(t)

∣
∣
∣
∣
∣

+
∫ 1

0

∣
∣Hσ (1, s)

∣
∣φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1φ∗

p

(
Λ1

∥
∥z(ε)

∥
∥l1 + Λ2

)
dε

)

ds

≤  +
[

1
Γ (σ + 1)

+
1

Γ (σ )

][
1

Γ (ζ + 1)

]q–1(
Λ1

∥
∥z(ε)

∥
∥l1 + Λ2

)

=  + Θ
(
Λ1

∥
∥z(ε)

∥
∥l1 + Λ2

)
, (3.8)

where Θ = [ 1
Γ (σ+1) + 1

Γ (σ ) ][ 1
Γ (ζ+1) ]q–1.

This proves that G∗ is uniformly bounded.
In order to show that the operator G∗ is compact, we show the equicontinuity of the

operator G∗.
For 0 < t1 < t2 < 1, we have

∣
∣G∗z(t2) – G∗z(t1)

∣
∣

≤
∣
∣
∣
∣
∣

m∑

i=1

λi(t2) –
m∑

i=1

λi(t1)

∣
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ 1

0
Hσ (t2, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

–
∫ 1

0
Hσ (t1, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

m∑

i=1

λi(t2) –
m∑

i=1

λi(t1)

∣
∣
∣
∣
∣

+
∫ 1

0

∣
∣Hσ (t2, s) – Hσ (t1, s)

∣
∣φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1φ∗

p

(
Λ1

∥
∥z(ε)

∥
∥l1 + Λ2

)
dε

)

ds

≤
( |t2σ – t1

σ |
Γ (σ + 1)

+
|t2 – t1|
Γ (σ )

)[
1

Γ (ζ + 1)

]q–1(
Λ1

∥
∥z(ε)

∥
∥l1 + Λ2

)

× ∣
∣G∗z(t2) – G∗z(t1)

∣
∣

−→ 0 as (t2 – t1) −→ 0. (3.9)

Thus, G∗ is an equicontinuous operator on (A∗2(r)) \ A∗
1 (r) and by the Arzela–Ascoli

theorem G∗ is compact on (A∗2(r))\A∗
1 (r). In fact, all the conditions of Theorem 2.1 [58]

are satisfied. Thus G∗ : (A∗2(r)) \ A∗
1 (r)) → K∗ is a completely continuous operator.

Now here, let us determine the hight functions for ψ∗(t, z(t)) for r > 0, ∀t ∈ [0, 1]

⎧
⎨

⎩

φ∗
min(t, r) = mint∈[0,1]{ψ∗(t, z(t)) : tσ–1r ≤ z ≤ r} ≥ m > –∞,

φ∗
max(t, r) = maxt∈[0,1]{ψ∗(t, z(t)) : tσ–1r ≤ z ≤ r} ≤ M < +∞.

(3.10)
�
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Theorem 3.2 Suppose that assumptions (R1)–(R3), are satisfied and ∃a, b ∈R
+ such that

any of the following condition is satisfied:
(S1) a ≤ ‖∑m

i=1 λi(t)‖ +
∫ 1

0 |Hσ (1, s)|φ∗
q ( 1

Γ (ζ )
∫ s

0 (s – ε)ζ–1φ∗
min(ε, a) dε) ds < +∞ and

‖∑m
i=1 λi(t)‖ +

∫ 1
0 |Hσ (1, s)|φ∗

q ( 1
Γ (ζ )

∫ s

0 (s – ε)ζ–1φ∗
max(ε, b) dε) ds ≤ b, or

(S2) ‖∑m
i=1 λi(t)‖ +

∫ 1
0 |Hσ (1, s)|φ∗

q ( 1
Γ (ζ )

∫ s

0 (s – ε)ζ–1φ∗
max(ε, a) dε) ds < a and

b ≤ ‖∑m
i=1 λi(t)‖ +

∫ 1
0 |Hσ (1, s)|φ∗

q ( 1
Γ (ζ )

∫ s

0 (s – ε)ζ–1φ∗
min(ε, b) dε) ds < +∞.

Then Eq. (1.1) has a positive solution z ∈ K∗ and a ≤ ‖z‖ ≤ b.

Proof Firstly, we are considering the case (S1). If z ∈ ∂A∗(a) then ‖z‖ = a and ∀t ∈ [0, 1],
tσ–1a ≤ z ≤ a . Using (3.10), φ∗

min(t, a) ≤ ψ∗(t, z(t)), we write

∥
∥G∗z

∥
∥ = max

t∈[0,1]

∣
∣
∣
∣
∣

m∑

i=1

λi(t) +
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

∣
∣
∣
∣
∣

≥
∥
∥
∥
∥
∥

m∑

i=1

λi(t)

∥
∥
∥
∥
∥

+ tσ–1
∫ 1

0

∣
∣Hσ (1, s)

∣
∣φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

≥
∥
∥
∥
∥
∥

m∑

i=1

λi(t)

∥
∥
∥
∥
∥

+ tσ–1
∫ 1

0

∣
∣Hσ (1, s)

∣
∣φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1φ∗

min(ε, a) dε

)

ds ≥ a

= ‖z‖. (3.11)

Now, for all t ∈ [0, 1], tσ–1b ≤ z ≤ b.
If z ∈ ∂A∗(b) then ‖z‖ = b and, using (3.10), we have φ∗

max(t, b) ≥ ψ∗(t, z(t)); we find

∥
∥G∗z

∥
∥ = max

t∈[0,1]

∣
∣
∣
∣
∣

m∑

i=1

λi(t) +
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

∣
∣
∣
∣
∣

≤
∥
∥
∥
∥
∥

m∑

i=1

λi(t)

∥
∥
∥
∥
∥

+
∫ 1

0

∣
∣Hσ (1, s)

∣
∣φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

≤
∥
∥
∥
∥
∥

m∑

i=1

λi(t)

∥
∥
∥
∥
∥

+ tσ–1
∫ 1

0

∣
∣Hσ (1, s)

∣
∣φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1φ∗

min(ε, a) dε

)

ds ≥ a

= ‖z‖. (3.12)

Using Lemma 1.2, z ∈ (A∗(b)) \ A∗(a) is a fixed point of G∗. By using Lemma 2.2 and
Theorem 2.1, for t ∈ (0, 1) and a ≤ ‖z‖ ≤ b, we have z(t) ≥ tσ–1‖z(t)‖ ≥ atσ–1 > 0. There-
fore z(t) is positive solution. It obeys

∂

∂t
z(t) =

∂

∂t
G∗z(t)

=
∂

∂t

m∑

i=1

λi(t) +
∫ 1

0

∂

∂t
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

> 0. (3.13)
�
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3.1 Uniqueness result
Theorem 3.3 Let us assume that assumptions (R1), (R2) and (R4) are satisfied. Then there
exists a unique solution for Eq. (1.1) on [0,1], if

∗ = L(q – 1)
[

M
Γ (ζ + 1)

]q–2[ 1
Γ (σ + 1)

+
1

Γ (σ )

][
1

Γ (ζ + 1)

]q–1

≤ 1. (3.14)

Proof We prove the uniqueness result for p ≥ 2.
By (3.10) and, for all t ∈ [0, 1],

Iζ
[
ψ∗(t, z(t)

)]
=

1
Γ (ζ )

∫ t

0
(t – s)ζ–1ψ∗(s, z(s)

)
ds

≤ 1
Γ (ζ )

∫ t

0
(t – s)ζ–1M ds ≤ M

Γ (ζ + 1)
. (3.15)

For each z ∈ (A∗(r)) \ A∗(r) and using (3.15) we have

∥
∥G∗z – G∗υ

∥
∥

= max
t∈[0,1]

∣
∣
∣
∣
∣

m∑

i=1

λi(t) +
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

–
m∑

i=1

λi(t) –
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε,υ(ε)

)
dε

)

ds

∣
∣
∣
∣
∣

≤
∫ 1

0

∣
∣Hσ (1, s)

∣
∣

∣
∣
∣
∣φ

∗
q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

– φ∗
q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε,υ(ε)

)
dε

)

ds

∣
∣
∣
∣

≤ (q – 1)
[

M
Γ (ζ + 1)

]q–2 ∫ 1

0

∣
∣Hσ (1, s)

∣
∣

∣
∣
∣
∣

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

–
(

1
Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε,υ(ε)

)
dε

)

ds

∣
∣
∣
∣

≤ L(q – 1)
[

M
Γ (ζ + 1)

]q–2[ 1
Γ (σ + 1)

+
1

Γ (σ )

][
1

Γ (ζ + 1)

]q–1

‖z – υ‖

= ∗ ∀t ∈ [0,1],

but in (3.14) we assumed that ∗ < 1. This proves that G∗ is a contraction map. Hence by
the Banach contraction mapping principle there exists a unique fixed point for operator
G∗. Hence, there exists a unique solution of Eq. (1.1) on [0,1]. �

4 Hyers–Ulam stability
Here, we analyze the HU stability of (1.1). We define the HU stability as follows.

Definition 4.1 ([60]) The integral equation (3.1) is said to be HU stable if there exists
a non-negative constant ∗, for some fixed non-negative constant γ ∗ > 0 satisfying the
following:
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If

∣
∣
∣
∣
∣
z(t) –

m∑

i=1

λi(t) +
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

∣
∣
∣
∣
∣
≤ γ ∗, (4.1)

then there exists a function υ(t), which is continuous and satisfies

υ(t) =
m∑

i=1

λi(t) +
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε,υ(ε)

)
dε

)

ds, (4.2)

with

∣
∣z(t) – υ(t)

∣
∣ ≤ ∗γ ∗. (4.3)

Theorem 4.1 The FDE (1.1) with φ∗
p operator is HU stable for p > 2 provided that (R1),

(R2) and (R4) are satisfied.

Proof For the HU stability of the problem (1.1), we prove that for the integral equation
(3.1), with assumptions (R1), (R2) and (R4). we have

∣
∣z(t) – υ(t)

∣
∣

= max
t∈[0,1]

∣
∣
∣
∣
∣

m∑

i=1

λi(t) +
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

–
m∑

i=1

λi(t) –
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε,υ(ε)

)
dε

)

ds

∣
∣
∣
∣
∣

≤
∫ 1

0

∣
∣Hσ (1, s)

∣
∣

∣
∣
∣
∣φ

∗
q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

– φ∗
q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε,υ(ε)

)
dε

)

ds

∣
∣
∣
∣

≤ (q – 1)
[

M
Γ (ζ + 1)

]q–2 ∫ 1

0

∣
∣Hσ (1, s)

∣
∣

∣
∣
∣
∣

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

–
(

1
Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε,υ(ε)

)
dε

)

ds

∣
∣
∣
∣

≤ L(q – 1)
[

M
Γ (ζ + 1)

]q–2[ 1
Γ (σ + 1)

+
1

Γ (σ )

][
1

Γ (ζ + 1)

]q–1

‖z – υ‖

= ∗ ∀t ∈ [0,1]. (4.4)

Hence using (4.4) Eq. (3.1) is HU stable. As a result, the FDE (1.1) is HU stable. �

5 Example
Here, we present some examples to illustrate our results.
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Example 5.1 Let us take the following FDE:

⎧
⎪⎪⎨

⎪⎪⎩

cDζ φ∗
p[cDσ (z(t) –

∑m
i=1 λi(t))] = –ψ∗(t, z(t)), t ∈ [0,1],

φ∗
p[cDσ z(t) –

∑m
i=1 λi(t)]|t=0 = 0, z(0) =

∑m
i=1 λi(0),

z′(1) =
∑m

i=1 λ′
i(1), zj(0) =

∑m
i=1 λ

j
i(0) for j = 2, 3, 4, . . . , n – 1,

(5.1)

where ζ = 0.5, σ = 3.6, p = 5, q = 1.25, m = 3. We have
∑m

i=1 λi(t) = 1
t2+100+i ∀t ∈ [0, 1],

ψ∗(t, z(t)) = 1
t2+20 [|z|5 + 1

(1+7|z| 5
39 )

].

Let us consider

M = φ∗
max(t, r) = max

t∈[0,1]

{
1

t2 + 20

[

|z|5 +
1

(1 + 7|z| 5
39 )

]

: t
13
5 r ≤ z ≤ r

}

≤ max
t∈[0,1]

(
1

t2 + 20

[

|r|5 +
1

(1 + 7|t 1
3 r

5
39 |

])

≤ 0.1 ∀t ∈ [0, 1], r = b = 1,

φ∗
min(t, r) = min

t∈[0,1]

{
1

t2 + 20

[

|z|5 +
1

(1 + 7|z| 5
39 )

]

: t
13
5 r ≤ z ≤ r

}

≥ min
t∈[0,1]

(
1

t2 + 20

[
∣
∣t13r5∣∣ +

1

(1 + 7|r 5
39 |

])

≥ 0.0122503 ∀t ∈ [0, 1], r = a =
1

1000
.

Then

max
t∈[0,1]

( m∑

i=1

λi(t) +
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

)

≤ 0.115663 +
∫ 1

0
Hσ (1, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1φ∗

max(t, b)dε

)

ds

≤ 0.115663 +
∫ 1

0
Hσ (1, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1φ∗

max(t,1)dε

)

ds

≤ 0.115663 +
∫ 1

0
Hσ (1, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1φ∗

max(t,1)dε

)

ds

≤ 0.115663 + M
q–1

[
1

Γ (σ + 1)
+

1
Γ (σ )

][
1

Γ (ζ + 1)

]q–1

≤ 0.314901 < 1. (5.2)

Also we have

min
t∈[0,1]

( m∑

i=1

λi(t) +
∫ 1

0
Hσ (t, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1ψ∗(ε, z(ε)

)
dε

)

ds

)

≥ 0.029414 +
∫ 1

0
Hσ (1, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1φ∗

min(t, a)dε

)

ds
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≥ 0.029414 +
∫ 1

0
Hσ (1, s)φ∗

q

(
1

Γ (ζ )

∫ s

0
(s – ε)ζ–1φ∗

min

(

t,
1

1000

)

dε

)

ds

≥ 0.029414 >
1

1000
. (5.3)

Using Theorem 3.2, Eq. (5.1) has a solution z∗ which satisfies 1
1000 ≤ ‖z‖ ≤ 1.

Example 5.2 Let us take the following FDE:

⎧
⎪⎪⎨

⎪⎪⎩

cDζ φ∗
p[cDσ (z(t) –

∑m
i=1 λi(t))] = –ψ∗(t, z(t)), t ∈ [0,1],

φ∗
p[cDσ z(t) –

∑m
i=1 λi(t)]|t=0 = 0, z(0) =

∑m
i=1 λi(0),

z′(1) =
∑m

i=1 λ′
i(1), zj(0) =

∑m
i=1 λ

j
i(0) for j = 2, 3, 4, . . . , n – 1,

(5.4)

where ζ = 0.5, σ = 3.5, p = 5, q = 1.25, m = 3. We have
∑m

i=1 λi(t) = 1
t+100+i ∀t ∈ [0, 1].

ψ∗(t, z(t)) = 1
t2+20 [ |z|

(1+|z|) ], which satisfies the assumption (R4) and where L = 1
20 , that is,

∣
∣ψ∗(t, z(t)

)
– ψ∗(t,υ(t)

∣
∣ ≤ 1

20
|z – υ|.

Consider

M = φ∗
max(t, r) = max

t∈[0,1]

{
1

t2 + 20

[ |z|
(1 + |z|)

]

: t
5
2 r ≤ z ≤ r

}

≤ max
t∈[0,1]

(
1

t2 + 20

[ |r|
(1 + |t 5

2 r|)

])

≤ 0.05 ∀t ∈ [0, 1], r = b = 1.

Then

∗ = L(q – 1)
[

M
Γ (ζ + 1)

]q–2[ 1
Γ (σ + 1)

+
1

Γ (σ )

][
1

Γ (ζ + 1)

]q–1

≈ 0.04306 ≤ 1. (5.5)

Hence there exists a unique solution of Eq. (5.4) on [0,1] by Theorem 3.2. We can easily
check all the conditions of Theorem 4.1 are also satisfied. As a result, Eq. (5.4) is HU stable.

6 Conclusion
In this investigation, the existence results for general FDEs (1.1) involving a φ∗

p -Laplacian
operator is established by using Guo–Krasnoselskii’s fixed point theorem [58]. The
uniqueness results are proved by using the Banach contraction mapping principle and
HU stability is also evaluated. The properties of the Green function also proved. The va-
lidity of our result is illustrated by examples. Also, one can study the multiple solutions,
periodic solutions and controllability for the proposed general non-linear FDEs.
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