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Abstract TheVakhnenko–Parkes (VP) equationwith
power law nonlinearity is analyzed for Painlevé test
and for Lie symmetries. The Painlevé analysis of
Vakhnenko–Parkes equation with power law nonlin-
earity is performed by the Kruskal approach to check
the Painlevé property. The Lie group formalism is also
applied to derive symmetries of this equation, the ordi-
nary differential equations deduced are further studied,
and some exact solutions are obtained.
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1 Introduction

One of the challenging tasks in area of applied math-
ematics is to look for solutions of nonlinear evolution
equations (NLEEs) [1–18]. There are various types of
solutions that are available in the literature for these
equations. Some of them are soliton solutions, solitary
wave solutions, cnoidal and snoidal waves, periodic
solutions, shockwave solutions as well as various other
types.
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The standard form of one of the nonlinear evolution
equation (NLEE), Vakhnenko–Parkes (VP) equation,
is given by

uuxxt − uxuxt + u2ut = 0. (1)

It can be derived from reduced Ostrovsky equation
[1], which describes gravity waves propagating down
a channel under the influence Coriolis force.

In this paper, we will consider the Vakhnenko–
Parkes (VP) equation with power law nonlinearity [2]
in following form

uuxxt + auxuxt + bu2nut = 0, (2)

where a, b are nonzero real constants and n is positive
integer. While taking a = −1, b = 1 and n = 1, (2)
reduces to (1).

Firstly, Painlevé analysiswill be performed for (2) to
check its integrability. Then, Lie classical method will
be used to obtain symmetries of this equation. Further
using symmetries, it will be reduced to ordinary differ-
ential equations, and corresponding to the reduction,
exact solutions of the Vakhnenko–Parkes (VP) equa-
tion with power law nonlinearity will be obtained.

2 Painlevé analysis of the Vakhnenko–Parkes (VP)
equation with power law nonlinearity

Using the Painlevé test one can tell beforehandwhether
or not the given nonlinear partial differential equations
are integrable. Originally, Ablowitz et al. [3] conjec-
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tured that a nonlinear partial differential equation is
integrable if it has the Painlevé property: That is, its
solutions are single-valued about a movable singular
manifold

φ(z1, z2, . . . , zn) = 0, (3)

where φ is arbitrary function.
A nonlinear partial differential equation has a

Painlevé property if it has a Laurent-like expansion
about the movable singular manifold φ = 0:

u(zi ) = [φ(zi )]α
∞∑

j=0

u j (zi )φ(zi )
j , (4)

where α is a negative integer. Here the number of arbi-
trary function u j should be equal to order of the partial
differential equation.

In this section, we will perform Painlevé analysis
of (2).

2.1 Leading order and resonance analysis

For leading order, substitute

u(x, t) = u0(x, t)φ(x, t)α, (5)

in (2) and balance the most singular or dominant terms.
In this case we obtain the following value of

α = − 2

2n − 1
(6)

and

u0 =
(

− 2 (2 n + 1) (2 n + a)

b (2 n − 1)2

) 1
2n−1

×
(

∂

∂x
φ (x, t)

)− 2
2 n−1

. (7)

Lemma Leading-order singularity of Eq. (2) is a mov-
able pole with 2n − 1 equal to 1 or 2. It has rational
branch point for 2n − 1 > 2.

The powers of φ at which the resonance occurs are
determined by substituting

u(x, t) = u0(x, t)φ(x, t)α + φ(x, t)α+r , (8)

in (2) and balancing the most singular terms. Substi-
tuting (8) with (6)–(7) into (2), we obtain

− 16 n2 − 4 r3n2 + 12 r2n2 − 4 arn

+ 4 r3n + 4 ar2n − 8an − 12 rn

− 8 n − 2 ar2 − 6 ar − 2 r − 3 r2 − r3 − 4 a = 0 (9)

with solutions

r = −1,
2 (1 + 2 n)

−1 + 2 n
,
2 (2 n + a)

−1 + 2 n
. (10)

Theorem Equation (2) does not have the Painleve
property for all values of n, a with (2 n+a)

−1+2 n ≤ 0.
Using the above lemma and theorem, let us consider

the case when a = −1 and n = 1, for Eq. (2), with (6)–
(7), resonances occur at

r = −1, 2, 6. (11)

Laurent enpension takes the form

u(x, t) = u0φ
−2 + u1φ

−1 + u2

+ u3φ + u4φ
2 + u5φ

3 + u6φ
4 (12)

where u6 should be arbitrary function.
Now substituting (12) into (2) with a = −1, n = 1

and using the Kruskal approach [4] we have

φ = x − ψ(t) and u j = u j (t), (13)

where ψ(t) is arbitrary function of t .
Substituting (12) with (13) into (2) with a =

−1, n = 1 and collecting the same powers of φ, we
have

u0 = −6

u1 = 0

u2 = u2(t)

u3 = u̇2
2ψ̇

u4 = −bu22ψ̇
3 + ü2ψ̇ − u̇2ψ̈

10ψ̇3

u5 = −bu2u̇2
6ψ̇

u6 = u6(t), (14)

where˙denotes derivative with respect to t . So Eq. (2)
with a = −1, n = 1 has Painlevé property.

In general, Eq. (2) does not have Painlevé prop-
erty. But for truncated Larurent expansion on setting
u2 = u3 = u4 = u5 = u6 = 0, we have Bäcklund
transformation and obtain the following solution of (2)

u(x, t) =
(

− 2 (2 n + 1) (2 n + a)

b (2 n − 1)2

) 1
2n−1

× ((x − ψ(t)))−
2

2 n−1 . (15)
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3 Symmetry analysis

In this section, we will perform Lie symmetry analysis
[5–15] for the Vakhnenko–Parkes (VP) Eq. (2) with
power law nonlinearity.

Let us first consider the Lie group of point transfor-
mations

t∗ = t + ετ(x, t, u) + O(ε2)

x∗ = x + εξ(x, t, u) + O(ε2)

u∗ = u + εη(x, t, u) + O(ε2), (16)

which leaves Eq. (2) invariant. The infinitesimal trans-
formations (16) are such that if u is solution of Eq. (2),
then u∗ is also a solution. The method for determining
the similarity variables of (2) mainly consists of find-
ing the infinitesimals τ, ξ and η, which are functions
of x, t, u.

The infinitesimals are determined from invari-
ance conditions

ηuxxt + uηxxt + a(ηxuxt + uxη
xt )

+ b(u2nηt + 2bnηu2n−1ut ) = 0, (17)

by substituting the extended infinitesimals ηxxt , ηxt ,
ηx , ηt and setting the coefficients of different differen-
tials equal to zero.We obtain a large number of PDEs in
ξ, τ and η that need to be satisfied. The general solution
of system of equations of PDEs in ξ, τ and η provides
following forms for the infinitesimal elements

ξ = C1 + xC2

τ = f (t)

η = − 2

2n − 1
uC2, n �= 1

2
(18)

where C1,C2 are arbitrary constants and f (t) is arbi-
trary function of t .

The infinitesimal generators of the corresponding
Lie algebra are given by

V1 = ∂

∂x

V2 = x
∂

∂x
− 2

2n − 1
u

∂

∂u

V f = f (t)
∂

∂t
. (19)

It is easy to check that {V1, V2, V f } are closed under
the Lie bracket. In fact, vector fields constitute the Lie
algebra as follows:

V1 V2 V f

V1 0 V1 0

V2 −V1 0 0

V f 0 0 0

Remark 1 For particular case a=−1, b=1 and n = 1,
we have the symmetries obtained by Gandarias and
Bruzón [15].

4 Similarity reductions and invariant solutions

To obtain the similarity reductions of Eq. (2), we have
to solve the characteristic equation,

dx

ξ
= dx

τ
= dx

η
, (20)

where ξ, τ and η are given by (18). For solving charac-
teristic Eq. (20), we will consider two cases of vector
fields: (i) V2 + V f (ii) V1 + V f

Case (i) Vector field V2 + V f

Solving characteristic Eq. (20), we have follow-
ing similarity variables

σ = log x −
∫

1

f (t)
dt

u = x
2

1−2n F(σ ), (21)

where σ is new independent variable and F is new
dependent variable.

Using (21) in Eq. (2), we have following reduc-
tion

(1 − 2n)2FF ′′′ + 2(1 + 2n + 2a)FF ′

+ (1 − 2n)(3 + 2n + 2a)FF ′′ + 2a(1 − 2n)F ′2

+ a(1 − 2n)2F ′F ′′ + b(1 − 2n)2F2n F ′ = 0,

(22)

where ′ denotes derivative with respect to σ .

Case (ii) Vector field V1 + V f

Corresponding similarity variables are

ζ = x − β(t)

u = G(ζ ), (23)

where β(t) = ∫ 1
f (t)dt and ζ,G(t) are new indepen-

dent, dependent variables, respectively.
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Using (23) in Eq. (2), we obtain

G ′′′G + aG ′G ′′ + bG2nG ′ = 0, (24)

where ′ denotes derivative with respect to ζ .
Integrating (24), we obtain

G1+2nb

1 + 2n
+ a − 1

2
G ′2 + G ′′G = 0. (25)

5 New exact solutions of VP equation with power
law nonlinearity

Nowwewill consider theODE (25) for exact solutions.
If we use the transformation

G(ζ ) = W (ζ )−
2

2n−1 (26)

in Eq. (25), we have

b

1 + 2n
+

(
2a + 4n

(2n − 1)2

)
W ′2 − 2

2n − 1
WW ′′ = 0,

(27)

where ′ denotes derivatives with respect to ζ .
Solving the ODE (27), we obtain the following

solution

W (ζ ) = k1 ±
√

− b

2(1 + 2n)(a + 2n)
(2n − 1)ζ,

(28)

where k1 is arbitrary constant.
Using (23) and (26),weobtain the following solu-

tion of main Eq. (2)

u(x, t)=
(
k1 ±

√

− b

2(1+2n)(a+2n)
(2n−1)(x−β(t))

)− 2
2n−1

,

(29)

where arbitrary function β(t) = ∫ 1
f (t)dt .

If we impose the condition a = 1, then we obtain
the following solution of ODE (24)

G (ζ ) =
(

− 2 (1 + 2n)2

(ζ −2ζ n−k1+2k1 n)2 b

) 1
−1+2n

, (30)

where k1 is arbitrary constant.
Corresponding solution of main Eq. (2) with con-

dition a = 1 is

u (x, t) =
(

− 2 (1+2n)2

((x−β(t))(1−2n)−k1+2k1 n)2 b

) 1
−1+2n

,

(31)

where β(t) = ∫ 1
f (t)dt .

Now let us assume the solution of (25) in the form

G(ζ ) = A sechp(Bζ ), (32)

where A, B and p are constants to be determined.
Using (32) in (25) and balancing the nonlinear

and highest derivative terms, we have

p = 2

2n − 1
. (33)

Now equating the coefficients of the same power terms,
we obtain the following relations

a = −1

B =
(
b(2n − 1)

2(2n + 1)
A2n−1

) 1
2

. (34)

Corresponding solutions of main Eq. (2) are given by

u(x, t) = A sech
2

2n−1 (B(x − β(t))), (35)

with condition (34).

Remark 2 In solution (29), ifwe take k1 = 0,weobtain
the solution (15) that was obtained by using Bäcklund
transformation.

Remark 3 If we consider the particular case β(t) = t
in (35), we have the same solution as obtained in [2].

6 Conclusion

In this paper, we have considered the Painlevé property
and the symmetries for the Vakhnenko–Parkes (VP)
equation with power law nonlinearity. Using Kruskal
approach, we check the Painlevé property of VP equa-
tion with power law nonlinearity (2) and standard
form of VP Eq. (1) and proved that Eq. (1) is inte-
grable. We also obtain solution of (2) using Bäcklund
transformation. Then we applied Lie classical method
on (2) and using Lie symmetries reduced it into ordi-
nary differential equations. Corresponding to reduced
ordinary differential equation, we obtained some exact
solutions of VP equation with power law nonlinear-
ity (2). Solution (35) for n = 1, b = 1, A = 1 and
β(t) = AiryAi(t) gives Soliton solutions as shown in
Fig. 1.
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Fig. 1 Soliton solution (35) for n = 1, b = 1, A = 1 and
β(t) = AiryAi(t)
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