• Login
    View Item 
    •   Knowledge Repository Home
    • Theses and Dissertation
    • Mphil Thesis
    • View Item
    •   // Knowledge Repository Home
    • // Theses and Dissertation
    • // Mphil Thesis
    • // View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    Knowledge RepositorySchools & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    Preparation and characterization of cathode material for energy storage/conversion devices

    Thumbnail
    Date
    2016
    Author
    Sangeeta
    Metadata
    Show full item record
    Abstract
    Metal Matrix Composites (MMCs) have evoked an intense interest in recent times for potential applications in marines, aerospace and automotive industries owing to their larger strength to weight ratio and high-temperature resistance. We have synthesized nanocomposites of (LaMnO3)1-x/(TiO2)x and (Fe2O3)1-x/(Cr2O3)x with varying concentration of TiO2 (x = 0.0-0.4) and Cr2O3 (x = 0.0-1.0). In the first chapter, includes the introduction of the metal matrix nanocomposites and their advantages. In the second chapter we have discussed about the literature review and knowledge gap. Chapter 3 involves the experimental procedure and discussion of different characterization techniques (XRD, FTIR, FESEM and EDS) used to study the prepared sample. Chapter 4 involves result and discussions obtained by characterizing the prepared sample. XRD analysis confirms the orthorhombic structure of (LaMnO3)/(TiO2) and rhombohedral structure (Fe2O3)/(Cr2O3) nanocomposites. From FESEM we have calculated the particle size for pure (LaMnO3) is 1 m and for (LaMnO3)1-x/(TiO2)x and its value decreases from 19.99- 16.91 nm with increase the concentration of TiO2 from x = 0.1-0.4. We have also calculated the band gap and refractive index from the FTIR analysis and found that gradual increase in band gap from 2.1-2.26 eV and decrease in refractive index from 2.67-2.62 as the concentration of TiO2 increases (x = 0.0-0.4). The (Fe2O3)/(Cr2O3) iv nanocomposites showed that increase in band gap 2.1-3.0 eV with decrease in particle size from 70.71-49.24 nm and refractive index from 2.67-2.44 as the concentration and Cr2O3 increases (x = 0.0-1.0.) The FTIR confirms all the functional groups present in the synthesized samples. The main application of these as- synthesized nanocomposites is photocatalysis.
    URI
    http://210.212.34.21/handle/32116/1672
    Collections
    • Mphil Thesis [124]
    • Physical Sciences-Mphil Thesis [4]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Initiatives by University Library 
    Central University of Punjab
     

     


    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Initiatives by University Library 
    Central University of Punjab