Show simple item record

dc.contributor.authorSingh, M
dc.contributor.authorGupta R.K.
dc.date.accessioned2019-09-03T09:48:04Z
dc.date.available2019-09-03T09:48:04Z
dc.date.issued2019
dc.identifier.citationSingh, M. and Gupta R.K.Group classification, conservation laws and Painlevé analysis for Klein–Gordon–Zakharov equations in (3 + 1)-dimension.92(1).10.1007/s12043-018-1665-3en_US
dc.identifier.issn3044289
dc.identifier.urihttp://210.212.34.21/handle/32116/2465
dc.description.abstractIn this paper, we study Klein–Gordon–Zakharov equations which describe the propagation of strong turbulence of the Langmuir wave in a high-frequency plasma. Using the symbolic manipulation tool Maple, the classifications of symmetry algebra are carried out, and the construction of several local non-trivial conservation laws based on a direct method of Anco and Bluman is illustrated. Starting with determination of symmetry algebra, the one- and two-dimensional optimal systems are constructed, and optimality is also established using various invariant functions of full adjoint action. Apart from classification and construction of several conservation laws, the Painlevé analysis is also performed in a symbolic manner which describes the non-integrability of equations. © 2018, Indian Academy of Sciences.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subject02.20.Qsen_US
dc.subject02.20.Sven_US
dc.subject02.30.Jren_US
dc.subject11.30.jen_US
dc.subjectconservation lawsen_US
dc.subjectKlein–Gordon–Zakharov equationsen_US
dc.subjectoptimal systemsen_US
dc.subjectPainlevé analysisen_US
dc.titleGroup classification, conservation laws and Painlevé analysis for Klein–Gordon–Zakharov equations in (3 + 1)-dimensionen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s12043-018-1665-3
dc.identifier.urlhttps://link.springer.com/article/10.1007%2Fs12043-018-1665-3
dc.title.journalPramana - Journal of Physicsen_US
dc.type.accesstypeClose Accessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record