• Login
    View Item 
    •   Knowledge Repository Home
    • School of Basic and Applied Sciences
    • Department of Biochemistry and Microbial Sciences
    • Biochemistry and Microbial Sciences-Research Publications
    • View Item
    •   // Knowledge Repository Home
    • // School of Basic and Applied Sciences
    • // Department of Biochemistry and Microbial Sciences
    • // Biochemistry and Microbial Sciences-Research Publications
    • // View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    Knowledge RepositorySchools & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    Assessment of risk conferred by coding and regulatory variations of TMPRSS2 and CD26 in susceptibility to SARS-CoV-2 infection in human

    Thumbnail
    View/Open
    01.pdf (1.150Mb)
    Date
    2020
    Author
    Senapati, S
    Kumar, S
    Singh, A.K
    Banerjee, P
    Bhagavatula, S.
    Metadata
    Show full item record
    Abstract
    At present, more than 200 countries and territories are directly affected by the coronavirus disease-19 (COVID-19) pandemic. Incidence and case fatality rate are significantly higher among elderly individuals (age > 60 years), type 2 diabetes and hypertension patients. Cellular receptor ACE2, serine protease TMPRSS2 and exopeptidase CD26 (also known as DPP4) are the three membrane bound proteins potentially implicated in SARS-CoV-2 infection. We hypothesised that common variants from TMPRSS2 and CD26 may play critical role in infection susceptibility of predisposed population or group of individuals. Coding (missense) and regulatory variants from TMPRSS2 and CD26 were studied across 26 global populations. Two missense and five regulatory SNPs were identified to have differential allelic frequency. Significant linkage disequilibrium (LD) signature was observed in different populations. Modelled protein?protein interaction (PPI) predicted strong molecular interaction between these two receptors and SARS-CoV-2 spike protein (S1 domain). However, two missense SNPs, rs12329760 (TMPRSS2) and rs1129599 (CD26), were not found to be involved physically in the said interaction. Four regulatory variants (rs112657409, rs11910678, rs77675406 and rs713400) from TMPRSS2 were found to influence the expression of TMPRSS2 and pathologically relevant MX1. rs13015258 a 5? UTR variant from CD26 have significant role in regulation of expression of key regulatory genes that could be involved in SARS-CoV-2 internalization. Overexpression of CD26 through epigenetic modification at rs13015258-C allele was found critical and could explain the higher SARS-CoV-2 infected fatality rate among type 2 diabetes. 2020, Indian Academy of Sciences.
    Journal
    Journal of Genetics
    Access Type
    Open Access
    URI
    http://172.158.2.16/handle/32116/2624
    URL
    https://link.springer.com/article/10.1007/s12041-020-01217-7
    DOI
    10.1007/s12041-020-01217-7
    Collections
    • Biochemistry and Microbial Sciences-Research Publications [88]
    • Human Genetics and Molecular Medicine-Research Publications [137]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Initiatives by University Library 
    Central University of Punjab
     

     


    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Initiatives by University Library 
    Central University of Punjab