Free-standing Pt and Pd nanowires: strain-modulated stability and magnetic and thermoelectric properties†

Shivam Kansara, a Sanjeev K. Gupta, b∗ Yogesh Sonvane, b∗ and Ashok Kumar c

We studied the Lagrangian strain-induced colossal magnetism and thermoelectric performance of platinum (Pt) and palladium (Pd) nanowires (NWs) using first-principles density functional calculations. Pt and Pd NWs were found to be dynamically stable for both strain-free and strained situations. Their cohesive energy and magnetic moment showed decrease and increase, respectively, with an increase in tensile Lagrangian strain (2% to 10%) in the (001) plane. Furthermore, we analyzed the thermodynamic properties using the quasi-harmonic approximation (QHA), heat capacity and internal energy of both NWs originating at 0 K, where their internal energy (E) remained high. For the NWs with the (100) and (010) planes, magnetism exist in the strain-free case, whereas it decreases rapidly on increasing the value of strain. Our results predict the excellent stability, colossal magnetism, and thermoelectric properties of the studied NWs; therefore, these NWs can be used as potential thermoelectric materials for device applications.

1. Introduction

Noble metal nanowires have attracted immense research interest owing to their potential technological applications.1−3 Various experimental techniques such as scanning electron microscopy (SEM), atomic force microscopy (AFM), contact resonance AFM, nanoindentation, micro-electro-mechanical-system (MEMS)-based testing and mechanically controllable break junctions are available for the study and characterization of atomically thin nanowires. Several experimental4 and theoretical5–8 studies have been devoted to investigate the properties of metallic nanowires including Hf, W, Co, Fe, Pt, and Au nanowires. Atomic chains of Au are short suspended monatomic wires, which are primarily synthesized and imaged via transmission electron microscopy (TEM)9,10 and the conductance is characterized by break junction experiments.11−13 Similarly, suspended Pt and Pd monoatomic nanowires were also synthesized.14−16

The magnetic properties of transition group systems should be dealt with at the atomic level, which can be analyzed using the electronic structure of the systems. It is known through theoretical analysis that one-dimensional atomic arrays may not be ferromagnetic in all cases. Also, surfaces, clusters and nanowires offer templates to study magnetic anisotropy.17,18 Orbital moments are emphatically eliminated by crystal fields; thus, the value of anisotropy is very small in the case of bulk counterparts.19,20 In the past, experimental and theoretical studies have been focused on nanoelectronic magnetic devices with spin-polarized electron transport in various one-dimensional (1D) nanostructures.20−23 Chopra et al.23 established the relationship between magnetic and transport properties of magnetic nanocontacts by giving the name “giant magnetoresistance” (GMR).

There are many ways to explore the electronic, magnetic, thermal and optical properties of 1D materials for desired applications;24−31 however, mechanical strain engineering has been proven to be one of the efficient techniques. Also, tuning the diameter of NWs, such as Pd and Pt NWs, can effectively lead to applications in free-standing membranes, which results in excellent electro-catalytic movement,32 high-performance hydrogen sensors,35,36 oxygen reduction responses,38 highly efficient fuel-cell catalysts37 and electrochemical amperometric biosensors.38 Pt NWs exhibit magnetic moment, which is ascribed to the extension of interatomic bonding in Pt atoms.39 In previous experiments, researchers successfully synthesized ultrathin Pt nanowires up to 300 nm, which spontaneously self-assembled into bundles without the utilization of any stabilizer and any external field.37,40 Recently, various vdW-corrections,
i.e., DFT-D2 and DFT-D3 and XC functionals, i.e., LDA and GGA have been used to show the effect of tensile and compressive strengths in bulk metals such as coinage metals and transition metals using representative DFT methods. These long range corrections are dedicated to finding weak interlayer bonding properties of low-dimensional materials for affording accurate bonding descriptions, i.e., conjugated π–π molecular systems, which were recently revealed in two-dimensional (2D) systems. VdW interactions ensure that the fundamental properties of systems such as size (lattice constant) and cohesion energy are not neglected. For a solid covalently bonded structure, dispersion interactions play a significant role in the static properties. However, vdW-correction DFT-D2 gives extremely inconsistent and qualitatively inappropriate outcomes for the tensile strength of bulk Pd. The real conductance of an atomic wire depends on precise orbital coverage, that is, the bond between the atoms or even the wire length.

In this study, we examined the phonon spectra, magnetic properties and thermoelectric performance of strained (0% to 10%) Pd and Pt NWs. The discussed NWs have attracted much attention due to their real-life applications in nanoscale devices. This inspired us to focus on the impact of strain on the magnetic and cohesive properties, anisotropy and stress in NWs. This paper is organized as follows: Methodology and computational details are presented in division 2, followed by Results and discussion in division 3, and Conclusions are discussed in division 4.

2. Methodology

Spin-polarized density functional theory (DFT) calculations were performed using the Quantum ESPRESSO (QE) package. Vanderbilt ultrasoft pseudopotentials were used to treat electron–ion interactions. The exchange–correlation term was defined using the generalized gradient approximation (GGA) within the Perdew–Wang (PW91) parameterization, and hybrid HSE06 functional. A vacuum space of 15 Å along x and y directions with the lattice parameters of a and b were taken to avoid the interactions between the periodic replicas. Atomic positions were fully relaxed until the Hellman–Feynman forces on each atom became less than 0.02 eV Å⁻¹. We utilized a plane-wave basis set with the kinetic energy cutoff of 700 eV. The self-consistent convergence of energies was taken as 10⁻¹⁰ eV atom⁻¹. A Monkhorst–Pack of 2 × 2 × 40 k-points was used for the self-consistent field sampling, whereas for the non-self-consistent field, it was 2 × 2 × 50 at gamma-centered calculations.

The magnetic anisotropy was correlated to quenching/dequenching of the orbital moment based on the spin direction. The magnetic moment (µB) of the nanowire is given as (1):

\[M = \sum_{j} \int [\psi_f^*(r) \frac{\partial \psi_f(r)}{\partial \phi} \, d^3r] \]

Here, \(\psi_f \) and \(\phi \) are the two-component spinor wave functions and the angle around the wire axis, respectively, and the sum runs over the occupied states in the atomic core regions of the ultrasoft pseudo-potentials.

To understand the thermodynamic properties, the first step was to inspect the lattice vibrational modes (phonons) of the material. The number of atoms, \(N = 3 \), in the primitive cell led to three acoustical (A) and six (3N – 3) optical (O) phonon modes. The displacement of the atoms along the x-direction was equivalent to a displacement along the y- or z-direction. Heat capacity, where all the oscillators in a solid are harmonic and have fixed frequencies, can be derived from Planck’s distribution. The heat capacity at a constant volume, \(C_V \), for the mode i is

\[C_V(T) = k_B \frac{e^{\varepsilon_i/k_B T}}{e^{\varepsilon_i/k_B T} - 1} \]

where \(k_B \) and \(T \) are the Boltzmann constant and temperature in K, respectively. Thermoelectric properties (thermal and electrical conductivity) were calculated using the semi-classical Boltzmann theory, as executed in the BoltzTraP code.

3. Results and discussions

A. Structural analysis

NWs were modeled from alternate stacks of (110) atomic planes of FCC, where two atoms were taken from each plane and one atom was center to the cell to model a NW along (110). Thus, the atoms from each plane seemed to form a dimer. The NWs were adjusted along the z-direction and demonstrated utilizing tetragonal supercells, as shown in Fig. 1(a and b). The inter-atomic spacing associated with the calculated zero-strain interatomic spacing (d) and angle \(\theta (\parallel) \) ranged from 2.74 Å to 2.72 Å and 83° to 85°, respectively. The equilibrium lattice constants to the z-direction for lattice parameter c were calculated to be 2.57 Å and 2.61 Å for Pd and Pt NWs, respectively. Previously, the tetragonal phases of Pd and Pt metals and their alloys were discussed. When strain is applied to the system, all atoms are allowed free motion. Thus, an optimized equilibrium position for all atoms of the twisted unit cell was used in the calculation, which yields the minimum total energy for the forced strain condition of the supercell. First, we considered Lagrangian strain ranging from 2% to 10% with an increment of 2% along the z-direction. The strain-stress curve (Fig. 1c) reveals that the tensile strength of Pt NWs is almost double that of Pd NWs. Also, cohesive energy of both NWs decreases monotonically on increasing the value of strain (Fig. 1d). The cohesive energy \(E_{\text{cohesive}} \) is calculated as follows:

\[E_{\text{cohesive}} = \frac{E_{\text{complex}} - nE_{\text{atoms}}}{n} \]

Here, \(E_{\text{complex}} \) and \(E_{\text{atoms}} \) are the total energy of the complex system and energy of a free atom, respectively, and \(n \) is the number of atoms in NWs. The values of the lattice constant (LC), nearest distance (d), angle \(\theta (\parallel) \) and magnetic moment along the (100) and (010) directions for different tensile Lagrangian strains (0% to 10%) are listed in Table S1 (ESI). We calculated the
magnetic moments for different diameters varying from \(~ 3.30 \text{ Å}\) to \(~ 8.67 \text{ Å}\) and found nonmagnetic behaviors of both NWs. The structures with different diameters of NWs are shown in Fig. S1 (ESI†).

Fig. 2 and 3 depict the phonon dispersion curves of Pt and Pd NWs, respectively. The nine phonon bands with three acoustical branches (LA, TA, and ZA) correspond to three atom/unit cell in Pt and Pd NWs. Out of these, six phonon bands form optical branches. All the acoustical branches exhibit linear dependence on frequency in the wave vector, implying a wavelength-independent speed for that mode, \(i.e.,\) NWs may carry a dispersionless medium for that mode. The other acoustical branches need a higher velocity for long wavelengths. The low-lying acoustical modes are absent in the spectra of both NWs, which show that Pt and Pd NWs are structurally stable materials. We noted that the maximum phonon frequency for Pd NWs is slightly larger than that of Pt NWs. Thus, these features of phonon dispersion may provide insights into the thermoelectric properties of given nanowires.\(^6\)

Usually, an increase in volume will weaken the bonding nature. Also, as strain is applied, the higher frequency band lines shift toward a lower frequency. With the application of 8% strain, the geometry of NWs is quite different from that of other samples. This case can be matched with strain-free NWs with three bands at low frequency.

In Pt NWs, all the phonon modes began with linear dispersion at a smaller strain; however, the out-of-plane mode did not change much with frequency and instead showed softening of the modes. It is also clear from the Fig. 2 that the splitting of the original degenerated modes of Pt NWs did not break their stability up to the applied 10% tensile strain and exhibited a real positive frequency for all the applied strains except 4% strain. Furthermore, there was no dramatic change in the nature of the phonon modes. Meanwhile, in the case of Pd NWs, the phonon
band structure showed a significant change in dispersion with the effect of strain. The strain-free Pd NWs were dynamically stable with real positive frequencies, whereas the out-of-plane mode (ZA) for strained NWs showed a small imaginary frequency at $\geq 4\%$ applied strain. With an increase in the volume of NWs, the bonding and angles of their atoms changed. In the case of 4% and 8% strains, the geometries were different after optimization compared to those of others. Also, the instability conditions and mechanism of the systems under ideal tensile strengths and critical strains were confirmed.62,63

The phonon density of states (PDOS) for strain-free NWs approached to 0 as the frequency $\rightarrow 0$, whereas strained Pd NWs showed finite PDOS in a few values of strain (Fig. S1, ESI†). The curvature of the phonon DOS showed different behaviors due to the weak and high range frequency. In PDOS, the lowest frequency part ($\sim 30-35$ cm$^{-1}$) indicated very weak electron acoustic phonon coupling. From the phonon dispersion curves in Fig. 2 and 3, the phonon band gaps of Pt NWs appeared around 150 cm$^{-1}$, which indicated the application of highly stressed nanowires. In addition, the specific heat and internal energy of both NWs using quasi-harmonic approximation (QHA) are shown in Fig. S2 (ESI†) as T_1 and related discussion on thermodynamic properties are given in the ESI† as T_1. It was found that Pt NWs are more sustainable than Pd NWs under strain-free conditions.

B. Strain effect on electronic and magnetic properties

The electronic band structure and density of states (DOS) of the studied NWs are given in Fig. 4. The bands crossing the Fermi levels mainly consist of d-states. From the electronic DOS, it is predictable that NWs are stable owing to the high energy and low density of the d-orbital at the Fermi level.34 Looking at the electronic structure of NWs, the 5d and 6s states give 16 spin orbital bands for Pt NWs (Fig. 4). In both NWs, the large splitting of up and down spin DOS results in the existence of a magnetic moment for NWs. Insights into the bonding character of NWs were derived from the electronic charge density analysis. It is clear from Fig. 4(c–f) that along the atomic sphere, electrons are not limited, and their reasonable proportion resides in the interstitial region. Thus, the nature of the bonding is covalent for the strain-free systems. The strain-dependent electronic charge density is shown in Fig. S3 and S4 (ESI†) and electron charge transfer using Bader charge analysis is shown in Table S2 (ESI†).

The charge density thermos can be used to distinguish the charge conductivity across the system. Next, we calculated the magnetic moment of all three deformation modes. It is important to note that tensile strain changes the atomic structure of NWs.64 The unexpected anisotropic colossal magnetic moments (μ_B) for the strain-free wire were calculated to be 2.16 μ_B (100-plane) and 0.83 μ_B (010-plane) for Pt and Pd NWs, respectively, which decreases with an increase in tensile strain. The spin magnetic moment mainly depends on the interatomic spacing and angle, which ranged from 2.68 Å to 2.74 Å and 83° to 91°, respectively, for NWs. Our calculated colossal magnetic moments were 1.48 μ_B and 1.30 μ_B for $d = 2.87$ Å and 2.83 Å, respectively, for both Pt and Pd NWs.

Fig. 5 represents the conceptual diagram for electron transition under Lagrangian strain in the absence and presence of an external field. Here, half of the electrons have spin in z-directions and remaining electrons have a negative spin direction in the absence of an external field; thus, the resultant net magnetization is zero. On applying Lagrangian strain along the z-direction, the parallel spins along B went down by $\mu_B B$, whereas in the opposite direction to B, the spins went up. This situation is
dynamically unstable; hence, the electrons near the Fermi level jumped from the antiparallel half spin to the parallel spin and net magnetization started to occur. The one-dimensional Bloch functions are eigenstates of the z-components of total angular momentum (j_z) and half integer eigenvalues of the split magnetic states m_j. The matrix elements of spin matrices can be given as follows:

$$p_{5/2} = \frac{1}{2}j_s a_{j_z}$$

Here, p, p' can be positive or negative and σ_x, x, y, z are the Pauli matrices in the spin–orbit limit.

It was found that the population of the anti-bonding states at the Fermi level (Fig. 6) is responsible for the electronic instability that leads to spin contamination, which plays an important role in shifting the energy level of NWs. Ferromagnetism appeared after the removal of these anti-bonding states from the Fermi level. The d-states exhibited splitting under an external field due to the spin sub lattices and rearrangement of charge density. The magnetism or polarization effects in NWs have been described in Fig. 7. Spin polarization is a default property of materials but here, it arises due to the strain in both NWs. The mechanism of the origin of magnetism due to splitting of d states as z- and β-spin contamination was proposed by Stoner. Briefly, Stoner introduced 1-DOS (ρ_g) > 1, where l and DOS (ρ_g) are the strength of the exchange interaction of the metal system and density of state at the Fermi level, respectively. Also, in NWs, each atom is bonded with two neighboring atoms; thus, the magnetic moment strongly depends on the distance of the neighboring atoms. As shown in Fig. 7, the magnetic moment and polarization values increased with increasing strain, which led to an increase in the colossal magnetic moment of NWs, for which symmetry is responsible.

To understand the reason for magnetism, we examined spin polarization of the electrons and magnetic moment of Pd and Pt NWs. From projected density of states (PDOS), we can understand the magnetic moment and polarization by orbital contribution. The proportion of density of states up spin (D_{up}) and down spin (D_{down}) electrons at the Fermi level is spin polarization. This can be determined using eqn (5):

$$P = \frac{D_{up} - D_{down}}{D_{up} + D_{down}}$$

In Fig. 4, Pt and Pd NWs showed zero spin polarization, which confirms their non-magnetic behavior. The quantum confinement may be the reason for the zero spin polarization shown in Fig. 4. Fig. 6 shows ferromagnetic behavior with negative spin polarization, where the electrons with down spin dominate the Fermi region.

To determine the anisotropy magnetic moment, we performed calculations for all three deformation modes, where it is important to consider tensile strain because the properties are believed to change in the atomic structure with only tensile strain. Thus,
it should be noted that the unexpected anisotropy colossal magnetic moments (μ_B) at free-strain were 2.16 (μ_B) (100-plane) and 0.83 (μ_B) (010-plane) for both cases, which decreased with respect to an increase in tensile strain. The anisotropy in the magnetic moment was also reported in previous studies.15,61,74–77 For example, the magnetic moments for Pt NWs were calculated to be 0.90 μ_B and 0.80 μ_B for parallel and perpendicular to the wire,74 respectively, whereas the values were 0.47 μ_B for central, 0.81 μ_B for infinite, and 0.56 μ_B for parallel NWs.76 Similarly, the magnetic moment for Pd NWs varied with an increase in their length.76–80 The magnetic moments of the respective NWs were also calculated using the HSE06 hybrid functional, which are presented in the ESI† as Fig. S4. The values of the magnetic moments of PBE and HSE06 were very close to each other.

C. Thermoelectric properties

The electron relaxation time, τ_e, is a necessary parameter for the calculation of thermoelectric properties. In the BoltzTrap code, the semi-classical transport coefficient is treated, and it is based on a smoothened Fourier interpolation of the bands. Here, τ_e varied with strain, carrier concentration and temperature, and we only considered the effect of temperature on the electron relaxation time τ_e. The standard electron–phonon dependence for τ_e is $\tau_e = CT^{-1}n^{-1/3}$, where C is a constant and T is temperature in K. The phonon-boundary scattering was considered with the Debye–Callaway model, which is frequency- and temperature-independent. Thus, the thermal conductivity basically follows T^3. As temperature increased, the thermal conductivity increased due to impurity and phonon–phonon scattering.

The results demonstrate excellent electronic thermal and electrical conductivities of Pd and Pt NWs (Fig. 8). The thermal (electrical) conductivity values of Pt and Pd were 91 W m$^{-1}$ K$^{-1}$ (4.70×10^7 S m$^{-1}$) and 70 W m$^{-1}$ K$^{-1}$ (3.77×10^7 S m$^{-1}$), respectively, at 800 K. Bhatta et al.81 reported the thermal conductivity values of Pt NWs in previous studies, which were 80 W m$^{-1}$ K$^{-1}$ and 90 W m$^{-1}$ K$^{-1}$ at 700 K and 800 K. Similarly,
Terada et al.82 reported the thermal conductivity of a Pt monoatomic wire to be 95 W m-1 K-1 at 1100 K. The electrical conductivity of Pt was 2.15 \times 106 S m-1 for wire and 9.5 \times 106 S m-1 for bulk.83 In the case of Pd, the thermal conductivity value of 85.3 W m-1 K-1 was found at the onset of melting, whereas at the beginning of the liquid phase, it was calculated to be 54 W m-1 K-1.84 Zinoviev et al.85 reported a value of 86 W m-1 K-1 at 1600 K. Vlasov et al.86 reported thermal conductivity values at the end of the solid phase and the beginning of the liquid phase as 99 and 87 W m-1 K-1, respectively. The electrical conductivity values of 3.0 \times 107 S m-1 at 300 K87 and 0.95 \times 107 S m-1 at 1740 K88 were reported for bulk Pd, whereas the value of 0.88 \times 107 S m-1 was reported at 1740 K.88 Thus, it can be concluded that our studied NWs have high thermal and electrical conductivities. The calculated thermoelectric properties such as electrical and thermal conductivity in Fig. 8 show conductivity at various strains, which can be useful for integrated devices under the desired pressure.

4. Conclusions

To date, there has been significant research on the use of Pt and Pd NWs for catalysis, biomedical and clean environment applications. However, very few studies have been reported the stability of NWs under strain and electric field with and without mechanical properties. We determined the structural, magnetic and vibrational properties of Pt and Pd NWs using first-principles calculations based on DFT. Increasing the tensile Lagrangian strain (2\% to 10\%) led to favorable conditions, which increased the colossal magnetic moment and decreased the cohesive strength of NWs in the (001) plane. The results showed that the magnetic moments of Pd NWs are larger than that of Pt NWs, whereas the cohesive energy of Pt NWs is higher than that of Pd NWs. Moreover, their stability was confirmed by the phonon dispersion curves for strain-free and strained NWs. The strained Pt NWs showed real positive frequency modes, whereas Pd NWs exhibited small imaginary frequencies for the intermediate strain region (\geq 4\%). The strain-free Pd NWs exhibited larger specific heat as compared to Pd NWs, thereby showing excellent electronic thermal and electrical conductivities. The outcome of our study suggests the use of Pt and Pd NWs for different possible applications in spintronic and nanodevices.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

SKG would like to thank the Science and Engineering Research Board (SERB), India for the financial support (Grant no.: YSS/2015/001269).

References

2. Fatima, I. Can Oguz, D. Çakır, S. Hossain, R. Mohottige, O. Gulseren and N. Oncel, On the structural and electronic...
properties of Ir-silicide nanowires on Si(001) surface, J. Appl. Phys., 2016, 120, 095303.

35 N. Lu, H. Guo, L. Wang, X. Wu and X. Cheng Zeng, van der Waals trilayers and superlattices: modification of

C. Untiedt, D. M. T. Dekker, D. Djukic and J. M. van Ruitenbeek, Absence of magnetically induced fractional...

