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Abstract The variable coefficient KdV system is
investigated for nonclassical symmetries using com-
patibility method, and more general symmetries are
reported. Several inequivalent reductions are obtained
using optimal system of subalgebras, and using well-
knownmethodologies, several travelingwave solutions
are also obtained for every reduction.

Keywords Compatibility method · Symmetry
analysis · Variable coefficient KdV system · Traveling
wave solutions

1 Introduction

The inheriting nonlinear character of any physical phe-
nomenon can be better understood by mean of non-
linear partial differential equations. Rich variety of
powerful methods have been proposed for exact solu-
tions, such as tanh method [1,2], F-expansion method
[3,4], Jacobi elliptic method [5,6] and Hirota’s bilinear
method [7–10]. Analysis of partial differential equa-
tions usingLie groupmethod is oneof themost rigorous
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ways of exploiting symmetry properties of PDEs [11–
16]. There exist several other methodologies for sym-
metry analysis of PDEs such as nonclassical method
of Bluman [17–20] and direct method of Clarkson
[21,22]. Apart from symmetry methods, there are sev-
eral other tools available to analyze PDEs for ana-
lytical solutions [23–30], and beside analytical tech-
niques, some numerical schemes for solving PDEs are
also available [31–33]. Recently, Yan and Liu [34] pro-
posed new method known as compatibility method for
exploiting nonclassical symmetries of PDEs by estab-
lishing compatibility condition between original PDE
and corresponding modified invariant surface condi-
tion. In present work, we propose to explore symme-
tries of following variable coefficient KdV system

ut + a1(t) uux + a2(t) vvx + a3 (t)uxxx = 0,

vt + b1(t) vux + b2(t) uvx + b3(t)vxxx = 0,
(1)

using compatibility method. The KdV system (1) can
be derived from original KdV equation by use of trans-
formation u(x, t) → u(x, t) + i v(x, t) and separat-
ing the real and imaginary parts. The KdV system (1)
has been investigated by Lei et al. [35] for periodic
solutions. Wronskian and multi-soliton solutions are
constructed using Hirota’s bilinear method [36]. Using
Fréchet derivative, Singh andGupta [37] have exploited
its variable coefficient version for Lie symmetries. The
coefficient version of system (1) has many forms that
have been discussed in the literature, for example,
Nutku–Og̃uz model [38], Fuchssteiner equation [39],
Drinfeld–Sokolovmodel [40] andHirota–Satsuma sys-
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tem [41]. In addition to this, the constants coefficient
version of system (1) has been derived as particular
case of general coupled KdV system derived from the
two-layermodel of the atmospheric dynamical systems
[42] and two-component Bose–Einstein condensates
[43]. Even though in past, the KdV system (1) and its
various constant coefficient version have been analyzed
for Lie symmetries, we believe that using compatibility
method we can recover some more general symmetries
(or nonclassical symmetries in formal manner). The
outline of this paper is as follows. Section 2 deals with
derivation of symmetries using compatibility method.
In Sect. 3, several reductions for KdV system (1) are
obtained and many traveling wave solutions for these
reductions using well-known methodologies are also
presented, and finally, in Sect. 4 we offered conclusion.

2 Symmetries of KdV system (1)

In present work, our main aim is to obtain nonclassical
symmetries of the KdV system (1) using compatibility
method as described in Refs. [34,44]. Therefore, we
seek nonclassical symmetry in the form

ut = r(x, t) ux + s1(x, t) u + p1(x, t),

vt = r(x, t) vx + s2(x, t) v + p2(x, t),
(2)

where r(x, t), s1(x, t), s2(x, t), p1(x, t) and p1(x, t)
are unknown functions that need to be determined. In
order to obtain compatibility condition, we substitute
(2) into (1) and results read as

a1uux + a2vvx + rux + us1 + a3uxxx + p1 = 0,
(3a)

b2uvx + b1vux + rvx + vs2 + b3vxxx + p2 = 0,
(3b)

and thus highest order derivatives terms in (3) are uxxx
and vxxx ; below this order, no elimination could be
carried. Similarly, equality of utt and vt t between (1)
and (2) gives

a1uuxt + a′
1uux + va2vx,t + a′

2vvx + a1utux

+ a2vtvx + ruxt + us′
1 + a3uxxxt + rtux + s1ut

+ a′
3uxxx + p′

1 = 0, (4a)

b2uvxt + b′
2uvx + b1vuxt + b′

1vux + b1uxvt

+ b2utvx + rvxt + vs′
2 + b3vxxxt + r ′vx + s2vt

+ b′
3vxxx + p′

2 = 0, (4b)

where .′ = d
dt . Eliminating ut , vt , uxt , vxt , uxxx , vxxx ,

uxxxt and vxxxt from (4) with the help of (2) and (3),
we arrive at determining equations

p2 = 0, s1x = 0, s2x = 0, rxx = 0, p1t − a′
3 p1
a3

− 3rx p1 + a3 p1xxx = 0,

a′
2 − a′

3a2
a3

+ 2a2s2 − 2a2rx − s1a2 = 0, s1t − a′
3s1
a3

− 3rx s1 + a1 p1x = 0, rt − a′
3r

a3
+ a1 p1

− 3rrx = 0,

b′
1 − b′

3b1
b3

+ b1s1 − 2b1rx = 0, b′
2 − b′

3b2
b3

+ b2s1

− 2b2rx = 0, s2t − b′
3s2
b3

− 3rx s2 + p1xb1 = 0,

rt − b′
3r

b3
− 3rrx + b2 p1 = 0, a′

1 − a1a′
3

a3
− 2a1rx

+ a1s1 = 0, (5)

and solving the determining Eqs.(5), we get

r = −a3
(
c1x + c3

∫
a1 dt + c4

)

3c1
∫
a3 dt + c2

,

p1 = c3a3
3c1

∫
a3 dt + c2

s1 = − c5a3
3c1

∫
a3 dt + c2

, s2 = − c6a3
3c1

∫
a3 dt + c2

,

(6)

where ci (i = 1 . . . 6) are arbitrary integration constants
and a3 remains arbitrary function of t . The coefficient
functions a1, a2, b1, b2 and b3 are governed by follow-
ing constraints

[
a′
1

a1
− a′

3

a3

]
+ a3

[
2c1 − c5

3c1
∫
a3 dt + c2

]
= 0,

[
a′
2

a2
− a′

3

a3

]
+ a3

[
2c1 + c5 − 2c6
3c1

∫
a3 dt + c2

]
= 0

[
b′
1

b1
− a′

3

a3

]
+ a3

[
2c1 − c5

3c1
∫
a3 dt + c2

]
= 0,

b′
3

b3
= a′

3

a3
, b2 = a1. (7)

On substituting (6) into (2), the nonclassical symmetry
for variable coefficient KdV system (1) is thus written
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as

ut + a3
(
c1x + c3

∫
a1 dt + c4

)

3c1
∫
a3 dt + c2

ux

+ c5a3
3c1

∫
a3 dt + c2

u − c3a3
3c1

∫
a3 dt + c2

≡ 0, (8a)

vt + a3
(
c1x + c3

∫
a1 dt + c4

)

3c1
∫
a3 dt + c2

vx

+ c6a3
3c1

∫
a3 dt + c2

v ≡ 0, (8b)

the corresponding vector field of symmetry (8)

X ≡ 1

a3

(
3c1

∫
a3 dt + c2

)
∂

∂t

+
(
c1x + c3

∫
a1 dt + c4

)
∂

∂x

+(−c5u + c3)
∂

∂u
− c6v

∂

∂v
, (9)

and the Lie algebra associated with vector field (9) is
spanned by six vectors

X1 =
(

3

a3

∫
a3 dt

)
∂

∂t
+ x

∂

∂x
, X2 = 1

a3

∂

∂t
,

X3 =
(∫

a1 dt

)
∂

∂x
+ u

∂

∂u
,

X4 = ∂

∂x
, X5 = −u

∂

∂u
, X6 = −v

∂

∂v
. (10)

Remark 2.1 Here we want to remark that for c3 = 0,
the nonclassical symmetries (6) reduce to symmetries
obtained in [37]. This is also evident from symmetry
operator (9), which is more general form of symmetry
operator given in [37](see for, e.g., symmetry operator
V given at (1.7) in [37]). That is, with the aid of com-
patibility method we able to generalize symmetries for
KdV system (1).

3 Reduction of system (1) and some exact solutions

For six-dimensional Lie algebra (10), there exists infi-
nite number of combinations of generators Xi (i =
1 . . . 6) for which reduction of system (1) can be
achieved, but such reductions would not be inequiva-
lent. This problem of inequivalent reductions has been
duly covered in the literature [45–47] wherein for opti-
mal system of subalgebras, Olver [45] suggested con-
struction of adjoint table of adjoint actions between

eachmember of Lie algebra and Ovsiannikov [46] sug-
gested construction of globalmatrix of adjoint transfor-
mation. The technique of Ovsiannikov is far superior to
that of Olver but is less algorithmic. Therefore, based
onOlver’s procedure of construction of optimal system
and by solving following characteristics equation

dx

r
= dt

−1
= du

−(s1u + p1)
= dv

−s2v
(11)

we have following reductions for system (1).

Reduction 3.1 X1+ε5X5+ε6X6. The similarity vari-
ables and coefficient functions corresponding to this
subalgebra are obtained as follows:

ξ = x3
∫
a3 dt

, u = F(ξ)

(∫
a3 dt

)− ε5
3

,

v = G(ξ)

(∫
a3 dt

)− ε6
3

(12)

and solving the constrained conditions (7), we get

a1 = k1a3

(∫
a3 dt

)− 2
3+ ε5

3

,

a2 = k2a3

(∫
a3 dt

)− 2
3− ε5

3 + 2ε6
3

,

b1 = k3a3

(∫
a3 dt

)− 2
3+ ε5

3

, b2 = a1,

b3 = k4a3,

where k1, k2, k3 and k4 are arbitrary constants of inte-
gration, and the reduction of system (1) is obtained as
follows:

−ξF ′ − 1

3
ε5F + 3k1ξ

2
3 FF ′ + 3k2ξ

2
3GG ′

+ 27ξ2F ′′′ + 54ξF ′′ + 6F ′ = 0,

− ξG ′ − 1

3
ε6G + 3k3ξ

2
3GF ′ + 3k1ξ

2
3 FG ′

+ 27k4ξ
2G ′′′ + 54k4ξG

′′ + 6k4G
′ = 0. (13)

The travelingwave solution for (13) can be found using
simple ansätz defined as

F = d0 ξ
1
3 + d1 ξ− 2

3

G = e0 ξ
1
3 + e1 ξ− 2

3 (14)
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On substituting (14) into reduced equations (13) and
solving resulting algebraic equation, we obtain

d0 = 2 ε5ε6 + 5 ε5 + 2 ε6 − 4

6k1 (3 ε5 + ε6 − 2)
,

d1 = − 18 (2 ε5ε6 + 5 ε5 + 2 ε6 − 4) ε5

k1 (3 ε5+ε6−2)
(
3 ε52+4 ε5ε6−5 ε5−2 ε6+4

) ,

e1 = 36 (3 ε5 − 4 + 2 ε6) e0
3 ε52 + 4 ε5ε6 − 5 ε5 − 2 ε6 + 4

,

k2 = (2 ε5ε6 + 5 ε5 + 2 ε6 − 4) ε5 (2 ε5 − 1)

12k1 (3 ε5 + ε6 − 2)2 e02

k3 = k1
(
4 ε5ε6 + 2 ε6

2 + ε5 − 4 ε6
)

2 ε5ε6 + 5 ε5 + 2 ε6 − 4
,

k4 = 3 (ε6 + 1) ε5

3 ε52 + 4 ε5ε6 − 5 ε5 − 2 ε6 + 4
, (15)

and thus using similarity transformations (12) and (14),
the traveling solution forKdV system (1) can bewritten
as,

u =
⎛

⎝ d0

(
x3

∫
a3 (t) dt

) 1
3

+ d1

(
x3

∫
a3 (t) dt

)− 2
3

⎞

⎠

×
(∫

a3 (t) dt

)− ε5
3

, (16)

v =
⎛

⎝e0

(
x3

∫
a3 (t) dt

) 1
3

+ e1

(
x3

∫
a3 (t) dt

)− 2
3

⎞

⎠

×
(∫

a3 (t) dt

)− ε6
3

,

where e0 and k1 are arbitrary; d0, d1, e1, k2, k3 and k4
are defined by (15).

Reduction 3.2 X1 + ε2X2. The similarity variables
and coefficient functions corresponding to this subal-
gebra are obtained as follows:

ξ = x

(3
∫
a3 dt + ε2)

1
3

, u = F(ξ), v = G(ξ),

(17)

and solving the constrained conditions (7), we get

a1 = k1a3

(3
∫
a3 dt + ε2)

2
3

, a2 = k2a3

(3
∫
a3 dt + ε2)

2
3

,

b1 = k3a3

(3
∫
a3 dt + ε2)

2
3

, b2 = a1, b3 = k4a3

where k1, k2, k3 and k4 are arbitrary constants of inte-
gration, and the reduction of system (1) is obtained as
follows:

− ξF ′ + k1FF ′ + k2GG ′ + F ′′′ = 0,

− ξG ′ + k3GF ′ + k1FG
′ + k4G

′′′ = 0.
(18)

For reduction (18), we seek solution in the form

F = d0 ξ + d1

G = e0 ξ + e0,
(19)

and substituting (19) into reduced equation (18) and
upon solving resulting algebraic equations, we get

d0 = 1

k1 + k3
, e1 = −d1e0k1 (k1 + k3)

k3
,

k2 = k3
e02

(
k12 + 2 k1k3 + k32

) , (20)

and substituting (20) into (19) and using similarity
transformations (17), one get traveling wave solution
for KdV system (1)

u = x
(
3

∫
a3 (t) dt + ε2

) 1
3 (k1 + k3)

+ d1,

v = xe0
(
3

∫
a3 (t) dt + ε2

) 1
3

− d1e0k1 (k1 + k3)

k3
, (21)

where d1, e0, k1, k3 and k4 are arbitrary constants.

Reduction 3.3 X2 + ε6X6. The similarity variables
and coefficient functions corresponding to this subal-
gebra are obtained as follows:

ξ = x, u = F(ξ), v = G(ξ) exp

(
−

∫
ε6a3 dt

)
,

(22)

and solving the constrained conditions (7), we get

a1 = k1a3, a2 = k2a3 exp

(
2

∫
ε6a3 dt

)
,

b1 = k3a3, b2 = k1a3, b3 = k4a3

where k1, k2, k3 and k4 are arbitrary constants of inte-
gration, and the reduction of system (1) is obtained as
follows:

k1FF ′ + k2GG ′ + F ′′′ = 0

k3GF ′ − ε6G + k1FG
′ + k4G

′′′ = 0.
(23)

For traveling wave solutions of reduction (23), we

would like to use
(
G ′
G

)
method as described in [48,49].
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To proceed further, we seek solution of ODEs in the
form

F = dm

(
G ′

G

)m

+ dm−1

(
G ′

G

)m−1

+ dm−2

(
G ′

G

)m−2

+ . . . ,

G = en

(
G ′

G

)n

+ en−1

(
G ′

G

)n−1

+ en−2

(
G ′

G

)n−2

+ . . . , (24)

where m and n can be found by homogenous balance
between highest order derivative term and nonlinear
term in (23); for present case, we have m = n = 2 and
G = G(ξ) satisfies second-order linear ODE

G ′′ + λG ′ + μG = 0, (25)

where λ and μ are constants. Reduction of (25) can be
written as

G ′

G
= 1

2

√
λ2 − 4μ

×
⎛

⎝
c1 cosh

(
1
2

√
λ2 − 4μξ

)
+ c2 sinh

(
1
2

√
λ2 − 4μξ

)

c1 sinh
(
1
2

√
λ2 − 4μξ

)
+ c2 cosh

(
1
2

√
λ2 − 4μξ

)

⎞

⎠

−λ

2
. (26)

On substituting (24) into (23), an algebraic system of
equations in d0, d1, d2, e0, e1 and e2 can be obtained by

equating coefficients of
(
G ′
G

)
to zero. To save space,

we have omitted this algebraic systemhere and solution
to this system can straightforwardly be obtained using
Maple as follows:

d1 = λd2, e0 =
(

λ2

12
+ 2μ

3

)
e2, e1 = λe2, ε6 = 0,

k1 = 0, k2 = − 12d2
e22

, k3 = − 12k4
d2

(27)

and substituting (27) into (24) and using similarity
transformations (22), we deduce that

Case 3.3.1 λ2 − 4μ > 0.

u =
(
d2λ2

4
− d2μ

)

×
⎛

⎝
c1 cosh

(
1
2

√
λ2 − 4μx

)
+c2 sinh

(
1
2

√
λ2 − 4μx

)

c1 sinh
(
1
2

√
λ2 − 4μx

)
+c2 cosh

(
1
2

√
λ2 − 4μx

)

⎞

⎠

2

−
(
d2λ2

4
− d0

)

v =
(
e2λ2

4
− μ e2

)

×
⎛

⎝
c1 cosh

(
1
2

√
λ2 − 4μx

)
+c2 sinh

(
1
2

√
λ2 − 4μx

)

c1 sinh
(
1
2

√
λ2 − 4μx

)
+c2 cosh

(
1
2

√
λ2 − 4μx

)

⎞

⎠

2

−
(
e2λ2

6
− 2μ e2

3

)

Case 3.3.2 λ2 − 4μ < 0.

u =
(

−d2λ2

4
+ d2μ

)

×
⎛

⎝
c1 cos

(
1
2

√
−λ2 + 4μξ

)
− c2 sin

(
1
2

√
−λ2 + 4μξ

)

c1 sin
(
1
2

√
−λ2 + 4μξ

)
+ c2 cos

(
1
2

√
−λ2 + 4μξ

)

⎞

⎠

2

−
(
d2λ2

4
− d0

)

v =
(

− e2λ2

4
+ μ e2

)

×
⎛

⎝
c1 cos

(
1
2

√
−λ2 + 4μξ

)
− c2 sin

(
1
2

√
−λ2 + 4μξ

)

c1 sin
(
1
2

√
−λ2 + 4μξ

)
+ c2 cos

(
1
2

√
−λ2 + 4μξ

)

⎞

⎠

2

−
(
e2λ2

6
− 2μ e2

3

)

Case 3.3.3 λ2 − 4μ = 0.

u = (−λ xc2 − λ c1 + 2 c2)2 d2
(2 xc2 + 2 c1)2

+ (−λ xc2 − λ c1 + 2 c2) d2λ

2 xc2 + 2 c1
+ d0,

v = (−λ xc2 − λ c1 + 2 c2)2 e2
(2 xc2 + 2 c1)2

+ (−λ xc2 − λ c1 + 2 c2) e2λ

2 xc2 + 2 c1
+

(
λ2 + 8μ

)
e2

12
,

where c1, c2, d0, d2, e2 and k4 are arbitrary constants.

Reduction 3.4 X2+ε5X5+ε6X6. The similarity vari-
ables and coefficient functions corresponding to this
subalgebra are obtained as follows:
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ξ = x, u = F(ξ) exp

(
−

∫
ε5a3 dt

)
,

v = G(ξ) exp

(
−

∫
ε6a3 dt

)
, (28)

and solving the constrained conditions (7), we get

a1 = k1a3 exp

(∫
ε5a3 dt

)
,

a2 = k2a3 exp

(∫
(2ε6 − ε5) a3 dt

)
,

b1 = k3a3 exp

(∫
ε5a3 dt

)
,

b2 = a1, b3 = k4a3

where k1, k2, k3 and k4 are arbitrary constants of inte-
gration, and the reduction of system (1) is obtained as
follows:

− ε5F + k1FF ′ + k2GG ′ + F ′′′ = 0,

− ε6G + k3GF ′ + k1FG
′ + k4G

′′′ = 0.
(29)

On repeating procedure of
(
G ′
G

)
method as described

in previous case of Reduction 3.3, we have following
traveling wave solutions

Case 3.4.1 λ2 − 4μ > 0.

u =
(
d2λ2

4
− d2μ

)

×
⎛

⎝
c1 cosh

(
1
2

√
λ2 − 4μx

)
+ c2 sinh

(
1
2

√
λ2 − 4μx

)

c1 sinh
(
1
2

√
λ2 − 4μx

)
+ c2 cosh

(
1
2

√
λ2 − 4μx

)

⎞

⎠

2

− d2λ2

6
+ 2d2μ

3

v =
(
e2λ2

4
− e2μ

)

×
⎛

⎝
c1 cosh

(
1
2

√
λ2 − 4μx

)
+ c2 sinh

(
1
2

√
λ2 − 4μx

)

c1 sinh
(
1
2

√
λ2 − 4μx

)
+ c2 cosh

(
1
2

√
λ2 − 4μx

)

⎞

⎠

2

− 2e2λ2

3
+ 2e2μ

3

Case 3.4.2 λ2 − 4μ < 0.

u =
(

−d2λ2

4
+ d2μ

)

×
⎛

⎝
c1 cos

(
1
2

√−λ2 + 4μx
)

− c2 sin
(
1
2

√−λ2 + 4μx
)

c1 sin
(
1
2

√
λ2 + 4μx

)
+ c2 cos

(
1
2

√−λ2 + 4μx
)

⎞

⎠

2

− d2λ2

6
+ 2d2μ

3

v =
(

− e2λ2

4
+ e2μ

)

×
⎛

⎝
c1 cos

(
1
2

√−λ2 + 4μx
)

− c2 sin
(
1
2

√−λ2 + 4μx
)

c1 sin
(
1
2

√−λ2 + 4μx
)

+ c2 cos
(
1
2

√−λ2 + 4μx
)

⎞

⎠

2

− 2e2λ2

3
+ 2e2μ

3

Case 3.4.3 λ2 − 4μ = 0.

u = (−λ ξ c2 − λ c1 + 2 c2)2 d2
(2 ξ c2 + 2 c1)2

+ (−λ ξ c2 − λ c1 + 2 c2) d2λ

2 ξ c2 + 2 c1
+ d2λ2

12
+ 2d2μ

3
,

v = (−λ ξ c2 − λ c1 + 2 c2)2 e2
(2 ξ c2 + 2 c1)2

+ (−λ ξ c2 − λ c1 + 2 c2) e2λ

2 ξ c2 + 2 c1

+ e2λ2

12
+ 2e2μ

3
,

where c1, c2, d2 and e2 are arbitrary constants.

Reduction 3.5 X2 + ε4X4. The similarity variables
and coefficient functions corresponding to this subal-
gebra are obtained as follows:

ξ = x −
∫

ε4a3 dt, u = F(ξ), v = G(ξ), (30)

and solving the constrained conditions (7), we get

a1 = k1a3, a2 = k2a3, b1 = k3a3,

b2 = a1, b3 = k4a3,

where k1, k2, k3 and k4 are arbitrary constants of inte-
gration, and the reduction of system (1) is obtained as
follows:

− ε4F
′ + k1FF ′ + k2GG ′ + F ′′′ = 0

− ε4G
′ + k3GF ′ + k1FG

′ + k4G
′′′ = 0.

(31)
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Motivated by Riccati equation mapping method [50],
we seek solution in the form

F =
i=m∑

i=−m

diφ
i (ξ),

G =
i=n∑

i=−n

eiφ
i (ξ),

(32)

where φ′(ξ) = r + pφ(ξ) + qφ2(ξ). In (31) by bal-
ancing the highest order derivative term and nonlinear
term, we have m = n = 2, and on substituting (32)
into (31), a set of algebraic equations are obtained by
equating powers of φ(ξ) to zero. Solving such system
yields

d−2 = d−1 = 0,

d0 = − p2k1k4 + 8 qrk1k4 − ε4k1 − ε4k3
(k1 + k3) k1

,

d1 = − 12pqk4
k1 + k3

, d2 = − 12q2k4
k1 + k3

, e−2 = e−1 = 0,

e0 = k

(
p2 + 8 qr

k1 + k3

)
, e1 =

(
12pqk

k1 + k3

)
,

e2 = 12kq2

k1 + k3
, k =

(−k1k42 + k1k4 + k3k4
k2

) 1
2

(33)

Using solution set (33) and similarity transformations
(30), we have following traveling wave solutions

u = d0 + d1φi (ξ) + d2φ
2
i (ξ),

v = e0 + e1φi (ξ) + e2φ
2
i (ξ),

(34)

where for i = 1, 2, 3, 4.

φ1(ξ) = − p

2q
−

√
θ tanh

(
1
2

√
θξ

)

2q
, θ > 0, (35a)

φ2(ξ) = 4r sin
( 1
4

√−θξ
)
cos

( 1
4

√−θξ
)

−2 p sin
( 1
4

√−θξ
)
cos

( 1
4

√−θξ
) + 2

√−θ
(
cos

( 1
4 θξ

))2 − √−θ
,

θ < 0, (35b)

φ3(ξ) = − p (cosh (pξ) + sinh (pξ))

q (d1 + cosh (pξ) + sinh (pξ))
, r = 0, (35c)

φ4(ξ) = − 1

qξ + d2
, r = p = 0, (35d)

where θ = p2 − 4 qr and ξ = x − ∫
ε4a3 dt ,

k1, k2, k3, k4 and ε4 all are arbitrary constants.

Reduction 3.6 X2 + ε4X4 + ε5X5 + ε6X6. The simi-
larity variables and coefficient functions corresponding
to this subalgebra are obtained as follows:

ξ = x −
∫

ε4a3 dt, u = F(ξ) exp

(
−

∫
ε5a3 dt

)
,

v = G(ξ) exp

(
−

∫
ε6a3 dt

)
, (36)

and solving the constrained conditions (7), we get

a1 = k1a3 exp

(∫
ε5a3 dt

)
,

a2 = k2a3 exp

(∫
(2ε6 − ε5)a3 dt

)

b1 = k3a3 exp

(∫
ε5a3 dt

)
,

b2 = k1a3 exp

(∫
ε5a3 dt

)
, b3 = k4a3,

where k1, k2, k3 and k4 are arbitrary constants of inte-
gration, and the reduction of system (1) is obtained as
follows:

− ε4F
′ − ε5F + k1FF ′ + k2GG ′ + F ′′′ = 0

− ε4G
′ − ε6G + k3GF ′ + k1FG

′ + k4G
′′′ = 0.

(37)

For reduction of type (37), we seek solution in the form

F = d0 + d1 tanh(ξ) + d2 tanh
2(ξ)

G = e0 + e1 tanh(ξ) + e2 tanh
2(ξ),

(38)

and substituting (38) into (37) and solving resulting
algebraic equation, we get
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d1 = 0, d2 = − 12k4
k1 + k3

, e0 = − 8k

k1 + k3
, e1 = 0,

e2 = 12k

k1 + k3
, k =

(−k1k42 + k1k4 + k3k4
k2

) 1
2

ε4 = k1 (d0k1 + d0k3 − 8 k4)

k1 + k3
, ε5 = 0, ε6 = 0. (39)

Thus, with the aid of solutions (39) and similarity trans-
formations (36), traveling wave solution for KdV sys-
tem (1) can be written as

u = d0 − 12k4
k1 + k3

×
(
tanh

(
x −

∫
k1 (d0k1 + d0k3 − 8 k4) a3 (t)

k1 + k3
dt

))2

v = − 8k

k1 + k3
+ 12k

k1 + k3

×
(
tanh

(
x −

∫
k1 (d0k1 + d0k3 − 8 k4) a3 (t)

k1 + k3
dt

))2

,

(40)

where d0, k1, k3 and k4 are arbitrary constants and k is
given in (39).

Reduction 3.7 X2. The similarity variables and coef-
ficient functions corresponding to this subalgebra are
obtained as follows:

ξ = x, u = F(ξ), v = G(ξ), (41)

and solving the constrained conditions (7), we get

a1 = k1a3, a2 = k2a3, b1 = k3a3,

b2 = a1, b3 = k4a3,

where k1, k2, k3 and k4 are arbitrary constants of inte-
gration, and the reduction of system (1) is obtained as
follows:

k1FF ′ + k2GG ′ + F ′′′ = 0

k3GF ′ + k1FG
′ + k4G

′′′ = 0.
(42)

For traveling wave solutions of reduction (42), we use
same procedure of Riccati equation mapping method
as described in Reduction 3.5, and after balancing the
highest order derivative term with that of non-linear
term, we seek solution of (42) in the form

F = d0 + d1φ(ξ) + d2φ
2(ξ),

G = e0 + e1φ(ξ) + e2φ
2(ξ),

(43)

where φ′(ξ) = r + pφ(ξ) + qφ2(ξ). Substitution of
(43) into (42) yields

d1 = d2 p

q
,

e0 = −e2
(
p2d2 − 12 q2d0 + 8 qrd2 − d0d2k3

)

k3d22
,

e1 = e2 p

q
, k1 = −12 q2 + d2k3

d2
,

k2 = k3d22

e22
, k4 = 1, (44)

andusing (44) and similarity transformations (41), trav-
eling wave solutions for KdV system (1) can be written
as
u = d0 + d1φi (ξ) + d2φ

2
i (ξ),

v = e0 + e1φi (ξ) + e2φ
2
i (ξ),

(45)

where for i = 1, 2, 3, 4, φi (ξ) are already defined in
(35) and d0, d2, e2 and k3 are arbitrary.

Reduction 3.8 X4. The similarity variables and coef-
ficient functions corresponding to this subalgebra are
obtained as follows:

ξ = t, u = F(ξ), v = G(ξ), (46)

and solving the constrained conditions (7), we get

a1 = k1a3

(
∫
a3 dt)

2
3

, a2 = k2a3

(
∫
a3 dt)

2
3

,

b1 = k3a3

(
∫
a3 dt)

2
3

, b2 = a1, b3 = k4a3

where k1, k2, k3 and k4 are arbitrary constants of inte-
gration, and the reduction of system (1) is obtained as
follows:

F ′ = 0, G ′ = 0 (47)

and reduction (47) is equivalent to constant solution of
system (1).

Remark 3.1 All the calculations are handled using
Maple program, and the traveling wave solutions that
we have reported are verified using same tool.

4 Conclusion

The variable coefficient coupled KdV system has been
investigated in this manuscript using recently intro-
duced compatibility method. We have successfully
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applied procedure of compatibility method with the
aid of Maple program without which bulky algebraic
equations could have been unmanageable. Bypass-
ing the invariance criterion of Lie group method, six-
dimensional symmetry algebra is constructed. From
symmetry operator (9) for KdV system (1), it is evi-
dent that in this work, we able to recover more general
symmetries than reported in earlier work [37]. Pair-
wise disjointness of subalgebras through adjoint action
has given optimal system for symmetry algebra, and
consequently, several inequivalent reductions and their
traveling wave solutions are reported.

Acknowledgements Rajesh Kumar Gupta thanks the Univer-
sity Grant Commission for financial support provided through
UGC Research Award (F. 30-105/2016 (SA-II)) for the period
2016–2018.
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