Department Of Physics
Permanent URI for this community
Browse
Browsing Department Of Physics by Author "Afzal, Amir Muhammad"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Enhanced Electrochemical Performance of Hydrothermally Synthesized NiS/ZnS Composites as an Electrode for Super-Capacitors(Springer, 2021-08-22T00:00:00) Asghar, Ali; Yousaf, Muhammad Imran; Shad, Naveed Akhtar; Munir Sajid, M.; Afzal, Amir Muhammad; Javed, Yasir; Razzaq, Aamir; Shariq, Mohammad; Gulfam, Qurrat-ul-ain; Sarwar, Muhammad; Sharma, Surender K.In this study, nickel sulfide (NiS), zinc sulfide (ZnS), and their composites have been synthesized by using surfactant driven hydrothermal method. Synthesized materials are investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy, UV�Vis and Photoluminescence spectroscopy. XRD results have shown the presence of corresponding structural planes. Crystallite size was much smaller (15�nm) in the case of ZnS nanomaterials, whereas, composite materials have shown size comparable to NiS nanomaterials. SEM images presented morphology of star-like, spherical, and mixture of two for NiS, ZnS, and NiS/ZnS nanocomposites respectively. EDX spectrum of composite materials showed Nickel, Zinc, and Sulfur, indicating the purity of the synthesized composite. Electrochemical measurements i.e. cyclic voltammetry and galvanostatic charge�discharge were determined for all three materials. Maximum specific capacitance is obtained as 1594.68 F�g?1 at a scan rate of 5�mV�S?1 for NiS/ZnS composite materials whereas a charging/discharging time of 461.97�s is observed. The composite materials have shown 95.4% retention for applied for 3000 charging�discharging cycles. The favorable behavior of NiS/ZnS composites indicated their potential as an electrode material for pseudo-capacitors. � 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Facile synthesis of Bi2WO6/rGO nanocomposites for photocatalytic and solar cell applications(Elsevier Ltd, 2021-02-22T00:00:00) Shad, Naveed Akhtar; Sajid, Muhammad Munir; Afzal, Amir Muhammad; Amin, Nasir; Javed, Yasir; Hassan, Safia; Imran, Zahid; Razaq, Aamir; Yousaf, Muhammad Imran; Munawar, Anam; Sharma, Surender KumarManipulation of materials at nanoscale provides many new and enhanced properties to be utilized for multifaceted applications, which was not possible before. In this study, we fabricated Bi2WO6/rGO composites using hydrothermal method. The obtained composites were then examined using different analytical techniques such as XRD, SEM, TEM, FTIR, XPS, BET, and AFM. Their catalytic properties were assayed by carrying out the degradation of organic dye Rhodamine B (RhB) and employed as a hole transport layer (HTL) in the perovskite solar cells. The fabricated nanocomposites were able to degrade 98% of dye solution within 4 h. The improved photocatalysis is attributed to a large surface area ~86.06 m2/g with pore size 7.812 nm and enhanced separation of electron-hole pair charges due to rGO sheets. The open-circuit voltage was increased up to 0.94 V when composite materials were used as HTL. The power conversion efficiency (PCE) of the device was enhanced to 11% because of the improvement in the interface quality between HTL and the perovskite layer. It is conceived that the fabricated nanomaterial may show excellent potential in smart solar cell applications. � 2021 Elsevier Ltd and Techna Group S.r.l.