Department Of Environmental Science And Technology
Permanent URI for this community
Browse
Browsing Department Of Environmental Science And Technology by Author "Annu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Evaluation of the antioxidant, antibacterial and anticancer (lung cancer cell line A549) activity of: Punica granatum mediated silver nanoparticles(Royal Society of Chemistry, 2018) Annu; Ahmed S.; Kaur G.; Sharma P.; Singh S.; Ikram S.This work aimed to synthesize silver nanoparticles via an environmentally benign route, using the aqueous extract of Punica granatum as a precursor as well as a stabilizing and reducing agent. The as-synthesized silver nanoparticles were confirmed using UV-visible spectroscopy with an absorbance peak at 450 nm and were thereafter further confirmed using dynamic light scattering (DLS), High Resolution Transmission Electron Microscopy (HR-TEM) and X-Ray Diffraction (XRD). TEM analysis revealed 6-45 nm and spherically dispersed nanoparticles and XRD showed the crystalline nature of the nanoparticles. The free radical scavenging activity of the nanoparticles for DPPH and intracellular reactive oxidative species (ROS) production were observed using dihydroethidium (DHE) non-fluorescent stain and a CellROX® Deep Red fluorescent probe. Antibacterial assays against the most common Gram negative (Escherichia coli) and Gram positive (Staphylococcus aureus) bacteria showed a higher zone of inhibition against S. aureus. Furthermore, the anti-cancerous activity of the biologically synthesized silver nanoparticles was revealed by the inhibited cell growth of lung cancer A549 cells and no cytotoxicity was observed. This may be due to their ability to arrest the cell cycle at G1 phase. Thus, this work provides a gateway to explore more about the anticancer properties of biogenically synthesized silver nanoparticles and these biologically prepared silver nanoparticles have the potential to be utilized in biomedical science.Item Fruit waste (peel) as bio-reductant to synthesize silver nanoparticles with antimicrobial, antioxidant and cytotoxic activities(University of South Bohemia, 2018) Annu; Ahmed, Shakeel; Kaur, Gurpreet; Sharma, Praveen; Singh, Sandeep; Ikram, SaiqaSince last decade, biogenic synthesis of metal or metal-oxide nanoparticles is emerging as an alternative method, which is environment friendly, simple and safe to use. In this article, fruit waste (peel) extract (FWE) of three citrus fruits viz. Citrus limon, Citrus sinensis, and Citrus limetta were used as bio-reductant for green and sustainable synthesis of silver nanoparticles (AgNPs). As-synthesised AgNPs were characterized by using UV-vis spectroscopy, Dynamic light scattering, and High Resolution Transmission Electron Microscopy. TEM studies revealed 9-46 nm size range of synthesized AgNPs. The antimicrobial and antioxidant activities were also studied by using Agar well diffusion method and DPPH Assay, respectively. Nanoparticles showed good antimicrobial activity against both Gram positive (S. aureus) and Gram negative (E. coli) bacteria. Further, bioactivity assays revealed selective cytotoxicity (anticancer) of the nanoparticles against human lung cancer cell line A549. The nanoparticles are able to induce cancer cell specific apoptosis at G0/G1 phase of cell cycle. The results showed potential mechanism of action of nanoparticles via augmentation of antioxidant system in cancer cells. Over all, this study show multifaceted potential bioactivities of nanoparticles generated from fruit waste. ? 2018 Faculty of Health and Social Sciences, University of South Bohemia in Ceske Budejovice.