Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Agarwal, Mukesh Chand"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Macromolecular crowding on Dynamics and Thermodynamic Stability of Heme Proteins
    (Elsevier, 2018) Kumar, Rajesh; Kumar, Rajesh; Sharma, Deepak; Garg, Mansi; Kumar, Vinay; Agarwal, Mukesh Chand
    Structural and molecular properties extracted from circular dichroism (CD), tryptophanfluorescence and 1-anilino-8-napthalene sulfonate (ANS) binding experiments suggest that the high concentration of synthetic crowding agents (dextran 40, dextran70 and ficoll 70) stabilizes and refolds the base-denatured ferricytochrome c (Ferricyt c) and lysozyme (Lyz) at pH 12.9 (±0.1) to molten globule (MG) states (CB-states). These results further revealed that the CB-states resemble the generic properties of MG-states. Thermodynamic analysis of thermal denaturation curves of base-denatured Ferricyt c and Lyz at pH 12.9 (±0.1) under variable concentrations of crowding agents (dextran 40, dextran 70 and ficoll 70) revealed that the crowder presence increases the thermal stability of base-denatured proteins and also prevents the cold denaturation of Ferricyt c. The results further showed that the nature, size and shape of crowder influence the crowding-mediated increase in secondary structure stabilization and thermal stability of base-denatured Ferricyt c and Lyz. Analysis of kinetic and thermodynamic parameters measured for CO association reaction of alkaline ferrocytochrome c (Ferrocyt c) at pH 12.9 (±0.1) under variable concentrations of crowding agents (dextran 40, dextran 70 and ficoll 70) revealed that the crowder presence reduces the level of structural fluctuation of M80-containing Ω-loop that control CO association to alkaline Ferrocyt c.
  • Thumbnail Image
    Item
    Macromolecular crowding-induced molten globule states of the alkali pH-denatured proteins
    (Elsevier B.V., 2018) Kumar, Rajesh; Kumar, Rajesh; Sharma, Deepak; Garg, Mansi; Kumar, Vinay; Agarwal, Mukesh Chand
    Structural and molecular properties extracted from circular dichroism (CD), tryptophan fluorescence and 1-anilino-8-napthalene sulfonate (ANS) binding experiments suggest that the high concentration of synthetic crowding agents (dextran 40, dextran 70 and ficoll 70) stabilizes and refolds the base-denatured ferricytochrome c (Ferricyt c) and lysozyme (Lyz) at pH 12.9 (±0.1) to molten globule (MG) states (C B -states). These results further revealed that the C B -states resemble the generic properties of MG-states. Thermodynamic analysis of thermal denaturation curves of base-denatured Ferricyt c and Lyz at pH 12.9 (±0.1) under variable concentrations of crowding agents (dextran 40, dextran 70 and ficoll 70) revealed that the crowder presence increases the thermal stability of base-denatured proteins and also prevents the cold denaturation of Ferricyt c. The results further showed that the nature, size and shape of crowder influence the crowding-mediated increase in secondary structure stabilization and thermal stability of base-denatured Ferricyt c and Lyz. Analysis of kinetic and thermodynamic parameters measured for CO association reaction of alkaline ferrocytochrome c (Ferrocyt c) at pH 12.9 (±0.1) under variable concentrations of crowding agents (dextran 40, dextran 70 and ficoll 70) revealed that the crowder presence reduces the level of structural fluctuation of M80-containing ?-loop that control CO association to alkaline Ferrocyt c. - 2018 Elsevier B.V.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify