Browsing by Author "Beja, Santosh Kumar"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Deciphering the impact of anthropogenic coastal infrastructure on shoreline dynamicity along Gopalpur coast of Odisha (India): An integrated assessment with geospatial and field-based approaches(Elsevier B.V., 2022-10-22T00:00:00) Mishra, Manoranjan; Kar, Prabin K.; Chand, Pritam; Mohanty, Pratap K.; Acharyya, Tamoghna; Santos, Celso Augusto Guimar�es; Gon�alves, Rodrigo Mikosz; Silva, Richarde Marques da; Bhattacharyya, Debdeep; Beja, Santosh Kumar; Behera, BalajiOdisha's coastline supports various development activities that are critical to the state and national economy, such as oil and gas, ports and harbors, power plants, fishing, tourism, and mining that continues to not only detriment the coastal ecology but also affect the overall shoreline morphodynamics. The morphological changes are complicated processes involving both natural and human-induced drivers, but it is critical to understand how recent development activities further impact beach morphodynamics and shoreline dynamicity. The study analyzes the overall shoreline morphodynamics in response to the recent development of port and other related infrastructure for annual and decadal scale using two-dimensional (2-D) shoreline changes along with detailed 3-D beach profile volumetric changes for different studied zones along the Gopalpur coast. The results reveal that nearly all studied zones of the Gopalpur shoreline, Zone-4 (EPR = ?05.64 m a?1 and LRR = ?04.25 m a?1), Zone-3 (EPR = ?04.51 m a?1 and LRR = ?07.01 m a?1) and Zone-1 (EPR = ?2.85 m a?1 and LRR = ?01.46 m a?1), experienced erosion between 2010 and 2020 except Zone-2 (EPR = 24.31 m a?1 and LRR = 25.96 m a?1), which showed overall sign of deposition. The interannual shoreline analysis depicted that Zone-1 (tourist beach area) remained almost stable, Zone-2 (south of the breakwater of Gopalpur Port) showed accretion trends, Zone-4 (north side of the port) dominantly showed an erosion pattern, whereas Zone-3 (port area) showed a high level of uncertainty in the context of erosional or deposition trends. Calculated volumetric loss along the surveyed 3-D beach profiles supports these 2-D changes for all the studied zones. The results showed substantial changes in coastal morphodynamics in different studied zones of the Gopalpur region and severe erosion along its northern segment of the constructed coastal infrastructure. These findings can potentially promote effective coastal zone management and prevent further deterioration along the Gopalpur coast in future. � 2022 Elsevier B.V.Item Quantitative assessment of present and the future potential threat of coastal erosion along the Odisha coast using geospatial tools and statistical techniques(Elsevier B.V., 2023-02-28T00:00:00) Mishra, Manoranjan; Chand, Pritam; Beja, Santosh Kumar; Santos, Celso Augusto Guimar�es; Silva, Richarde Marques da; Ahmed, Ishtiaq; Kamal, Abu Hena MustafaThe eastern coast of India is one of the regions where most of the population resides in urban areas in the low-elevation coastal zone, making it vulnerable to frequent extreme weather events. The objectives of this study are to assess the short- to long-term shoreline changes of the Odisha coast, to understand how anthropogenic influences, and particularly extreme natural events, affect these changes, and to predict shoreline changes for 2050. This study utilized multi-temporal/spectral/spatial resolution satellite images and a digital shoreline analysis (DSAS) tool to appraise the short- (at five/six-year intervals) and long-term (1990�2019) shoreline dynamics along the coastal part of Odisha over the past three decades (1990�2019). The long-term shoreline analysis shows that the mean shoreline change is about 0.67 m/year and highlights that 52.47 % (227.4 km), 34.70 % (150.4 km), and 12.83 % (55.6 km) of the total Odisha coastline exhibit erosion, accretion, and stability, respectively. During the short-term analysis, the 2000�2005 period had the highest percentage of erosion (64.27 %), followed by the 2005�2010 period with an erosional trend of 59.06 %. The 1995�2000 period showed an accretion trend, whereas, during the last period, i.e., 2015�2019, the percentage of transects depicting erosion and accretion was almost similar. In 2050, 55.85 % of the transects are expected to show accretion, while 44.15 % would show erosion or a constant trend. The study identified the hotspots of coastal erosion along delineated study zones by synthesizing data from previous studies as well. The regional analysis of shoreline change along the Odisha coast would not only provide coastal managers with critical information on shoreline dynamics but also draw attention to vulnerable areas linked to shoreline dynamicity along the coast. � 2023 Elsevier B.V.