Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bhagat, Kuber Kumar"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Medicinal chemistry perspective of pyrido[2,3-d]pyrimidines as anticancer agents
    (Royal Society of Chemistry, 2023-03-03T00:00:00) Kumar, Adarsh; Bhagat, Kuber Kumar; Singh, Ankit Kumar; Singh, Harshwardhan; Angre, Tanuja; Verma, Amita; Khalilullah, Habibullah; Jaremko, Mariusz; Emwas, Abdul-Hamid; Kumar, Pradeep
    Cancer is a major cause of deaths across the globe due to chemoresistance and lack of selective chemotherapy. Pyrido[2,3-d]pyrimidine is an emerging scaffold in medicinal chemistry having a broad spectrum of activities, including antitumor, antibacterial, CNS depressive, anticonvulsant, and antipyretic activities. In this study, we have covered different cancer targets, including tyrosine kinase, extracellular regulated protein kinases - ABL kinase, phosphatidylinositol-3 kinase, mammalian target of rapamycin, p38 mitogen-activated protein kinases, BCR-ABL, dihydrofolate reductase, cyclin-dependent kinase, phosphodiesterase, KRAS and fibroblast growth factor receptors, their signaling pathways, mechanism of action and structure-activity relationship of pyrido[2,3-d]pyrimidine derivatives as inhibitors of the above-mentioned targets. This review will represent the complete medicinal and pharmacological profile of pyrido[2,3-d]pyrimidines as anticancer agents, and will help scientists to design new selective, effective and safe anticancer agents. � 2023 The Royal Society of Chemistry.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify