Browsing by Author "Bhushan, S"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Marine macroalga Caulerpa: role of its metabolites in modulating cancer signaling(Springer, 2019) Mehra, R; Bhushan, S; Bast, Felix; Singh, S.Cancer, the leading causes of death worldwide, causes multiple metabolic and physiological alterations, leading to an unregulated proliferation of cells. The existing anticancer therapies are usually nonspecific with side effects and or are extremely expensive, thus hunt for better therapeutics is still on, specially efforts are made to look for naturally occurring molecules. Sea harbors several organisms which are unexplored for their biological potentials. Green macroalga genus, Caulerpa, is one such invaluable repository of bioactive metabolites like alkaloids, terpenoids, flavonoids, steroids and tannins with reported bioactivities against many diseases including cancer. Anti-cancerous metabolites of Caulerpa like caulerpenyne (Cyn), caulerpin, caulersin, and racemosin C, possess unique structural moieties and are known to exhibit distinct effects on cancer cells. Theses metabolites are reported to affect microtubule dynamics, unfolded protein response, mitochondrial health, cell cycle progression, metabolic and stress pathways by their cross-talk with signalling proteins like AMPK, GRP78, GADD153, Bid, Bax, AIF, Bcl2, P21, cyclin D, cyclin E, caspase 9, and PTP1B. Targeting of multiple cancer hallmarks by Caulerpa metabolites, with concomitant modulations of multiple signalling cascades, displays its multifactorial approach against cancer. Evaluation of anti-cancer properties of this genus is particularly important as Caulerpa species are widely edible and utilized in several delicacies in the coastal countries. This is the first review article providing a consolidated information about the role of Caulerpa in cancer with major contributing metabolites and plausible modulations in cancer signaling and prospects. © 2019, Springer Nature B.V.Item Molecular docking and in vitro study of Syzygium cumini-derived natural compounds on receptor tyrosine kinases pathway components(Inderscience Enterprises Ltd., 2019) Singh, P; Bast, Felix; Bhushan, S; Mehra, R; Kamboj, P.Syzygium cumini (S. cumini) is used for a variety of biological activities such as anti-inflammatory, anti-diabetic and anti-oxidant; currently, it has been reported for DNA protecting activity against radiation damage. Receptor tyrosine kinases (RTKs) are identified as critical regulators of various cellular processes including cell proliferation, metabolism and apoptosis. These receptors have recently gained attention as an attractive target for cancer treatment. The present research was aimed to screen S. cumini-derived natural compounds against RTKs pathway components using molecular docking. Furthermore, in vitro anti-proliferative 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and anti-oxidative (nitro blue tetrazolium and H 2 CDFD) activities of leaf extract of S. cumini are also reported. Selected natural compounds were docked with X-ray crystal structure of RTKs signalling proteins using grid-based ligand docking with energetics Maestro 9.6. In the present investigation, our result highlighted that myricetin, kaempferol, delphinidin chloride, ellagic acid, rutin, petunidin, gossypol and mirtillin generated a good dock score with all selected proteins. Protein-ligand interactions accentuated that several bonds such as lipophilic, hydrogen bonding, π-π stacking and cation-π interactions represent a ruling contribution at the active site. Moreover, reduction in cell viability with leaf extract of S. cumini treatment at concentrations of 5-80 µg/ml after 48 h in MCF-7 cells was observed. Leaf extract of S. cumini significantly reduced the Reactive oxygen species (ROS) generation in MCF-7 cells after 48 h. These results indicate the anti-cancer potential of S. cumini. Thus, isolation and purification of anti-cancerous compounds are suggested to explore more possibilities in the field. © 2019 Inderscience Enterprises Ltd.