Browsing by Author "Biswas, Sayani"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Bio-assisted Synthesis of Au/Rh Nanostructure Electrocatalysts for Hydrogen Evolution and Methanol Oxidation Reactions: Composition Matters!(American Chemical Society, 2023-08-11T00:00:00) Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Ahmed, Imtiaz; Biswas, Sayani; Mondal, Krishnakanta; Haldar, Krishna KantaIn the field of catalysis, bimetallic nanostructures have attracted much interest. Here, we discuss the effect of Au/Rh bimetallic composition-tuned nanostructure and electrocatalytic activity. A simple bio-assisted technique was used to fabricate multiple Au:Rh nanoplate ratios (25:75, 50:50, and 75:25). XRD and XPS studies show that both Au and Rh phases coexist in a bimetallic nanostructure, and electron microscopy confirms the formation of a triangle-shaped nanoplate. Au0.25Rh0.75 exhibited the maximum catalytic activity and good stability for hydrogen evolution reaction (HER) with an overpotential of 105 mV at a current density of 10 mA/cm2. On the other hand, Au0.50Rh0.50 exhibits a higher activity for methanol oxidation reaction (MOR) compared to the other compositions. Theoretical studies indicate that the electrocatalytic enhancement obtained for both HER and MOR relies on electronic modification effects of the surface, with the overall reaction energy profile being optimized due to Au/Rh d-band mixing. � 2023 American Chemical Society.Item Electrical Conductivity of MXenes-Based Polymer Composites(CRC Press, 2023-04-07T00:00:00) Biswas, Sayani; Alegaonkar, Prashant S.MXenes are a new addition to the interesting class of 2D materials, and are a work in progress. There is a wide range of combinations and exciting properties associated with MXenes; one of them is their tendency to form polymer nanocomposites with enhanced features. Polymers and MXenes, when blended together, form a cohesive system in which the best properties of both the constituents are featured while the drawbacks are compensated. When MXenes are paired with conducting polymers, the resultant conductivity achieved surpasses the values produced individually. In this study, the electrically conductive nanocomposites of MXene and polymer are described, highlighting the most significant and recent works. These works are the stepping stones for future experiments of MXene-polymer composites to perfect their characteristics, conductivity and other electronic properties. � 2023 selection and editorial matter, Poushali Das, Andreas Rosenkranz, and Sayan Ganguly; individual chapters, the contributors.Item MXene: Evolutions in Chemical Synthesis and Recent Advances in Applications(Multidisciplinary Digital Publishing Institute (MDPI), 2021-12-23T00:00:00) Biswas, Sayani; Alegaonkar, Prashant S.Two-dimensional materials have secured a novel area of research in material science after the emergence of graphene. Now, a new family of 2D material-MXene is gradually growing and making itsmark in this field of study. MXenes since 2011 have been synthesized and experimented on in several ways.The HF treatment although successful poses some serious problems that gradually propelled the ideas of new synthesis methods. This review of the literature covers the major breakthroughs of MXene from the year of its discovery to recent endeavors, highlighting how the synthesis mechanisms have been developed over the years and also the importance of good characterization of data. Results and properties of this class of materials arealso briefly discussed alongwith recent advance in applications. � 2021 by the authors.Item Preparation and Energy Storage Assessment of Ti3C2 2d MXene and Its Possible Thinning Mechanism(Springer Nature, 2023-09-07T00:00:00) Singh, Diya; Rani, Pinki; Biswas, Sayani; Alegaonkar, Prashant S.Since after its discovery, MXene has captivated the focus of many researchers. In this work, we report on the low-temperature synthesis of Ti3AlC2 MAX phase at 800�? and its further etching to obtain Ti3C2 MXene. Initially, titanium (Ti), aluminium (Al), and graphite (C) precursors were taken in an appropriate volume proportion and add-mixed and grounded well via molten salt technique (Galvin et al. in J Eur Ceram Soc 38, 2018 [1]). The characterizations performed on powder such as FTIR, XRD, UV�Visible, SEM, and EDS confirmed Ti3AlC2 MAX phase. The MAX phase was subjected to the acid treatment (HF, concentration 40%) for ~ 80�h. The synthesized MXene was separated and investigated using FTIR, XRD, UV�Visible, SEM, and EDS techniques. The MXene was further employed to microwave treatment over the temperature 300�420�K at a discharge of power 120 W for 1�h. Analysis revealed that thickness of Ti3C2 layers is observed to be decreased with microwave treatment which can be a possible mechanism to obtain MXene quantum dots. In electrochemical analysis, specific capacitance for two electrode MXene@300�K and @400�K is reported to be 15 and 10�F/g, respectively, showing resistive nature of capacitance coupling for MXene. Analysis of electrochemical impedance spectroscopy together with bode showed the surface passivation effect of MXene layers to achieve different charge dynamics in both the systems. � 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.