Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chaudhary, Shivam"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    SUMO and SUMOylation in Plants: Ignored Arsenal to Combat Abiotic Stress
    (Springer, 2023-10-11T00:00:00) Yadav, Radheshyam; Chaudhary, Shivam; Ramakrishna, Wusirika
    Plants being fixed in one place are exposed to various episodes of different abiotic stresses such as drought, salinity, cold, and heat. SUMOylation is one of the ignored arsenals that help plants to develop tolerance to these external abiotic stresses. SUMOylation of target protein generally leads to changes in its transportation, transcriptional regulation, apoptosis, stability, and response to different stresses. de-SUMOylation of substrate proteins by SUMO proteases also play a crucial role in maintaining the cellular pool of SUMO. This review highlights different components of SUMOylation and their role in different abiotic stresses and their ability to contribute to plant abiotic stress tolerance. Furthermore, the current perspective of SUMOylation in phytochrome signaling, nutrient and ROS homeostasis is discussed. The full potential of SUMOylation in combination with other molecular approaches to combat abiotic stresses in plants is not yet realized. As research in this area continues to advance, it is crucial to explore the interplay between SUMOylation and other signaling networks, as well as the crosstalk with different stress-responsive pathways. Additionally, understanding the specificity and dynamics of SUMOylation in response to specific stressors can provide valuable insights for designing targeted interventions to enhance plant stress tolerance. In conclusion, the review highlights the emerging significance of SUMOylation in plant stress responses and its potential in contributing to plant resilience against abiotic stresses. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify