Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chauhan, Prachi"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Nano-engineered vitamins as a potential epigenetic modifier against environmental air pollutants
    (Walter de Gruyter GmbH, 2022-06-20T00:00:00) Ratre, Pooja; Chauhan, Prachi; Bhargava, Arpit; Tiwari, Rajnarayan; Thareja, Suresh; Srivastava, Rupesh Kumar; Mishra, Pradyumna Kumar
    Air pollution has emerged as a serious threat to human health due to close association with spectrum of chronic ailments including cardiovascular disorders, respiratory diseases, nervous system dysfunctions, diabetes and cancer. Exposure to air-borne pollutants along with poor eating behaviours and inferior dietary quality irreversibly impacts epigenomic landscape, leading to aberrant transcriptional control of gene expression which is central to patho-physiology of non-communicable diseases. It is assumed that nutriepigenomic interventions such as vitamins can control such adverse effects through their immediate action on mitochondrial epigenomic-axis. Importantly, the exhaustive clinical utility of vitamins-interceded epigenetic synchronization is not well characterized. Therefore, improving the current limitations linked to stability and bioavailability issues in vitamin formulations is highly warranted. The present review not only sums up the available data on the role of vitamins as potential epigenetic modifiers but also discusses the importance of nano-engineered vitamins as potential epidrugs for dietary and pharmacological intervention to mitigate the long-term effects of air pollution toxicity. � 2022 Walter de Gruyter GmbH, Berlin/Boston.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify