Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Dalal, Padma"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Reconstruction of post-little ice age glacier recession in the Lahaul Himalaya, north-west India
    (Taylor and Francis Ltd., 2022-12-13T00:00:00) Deswal, Sanjay; Sharma, Milap Chand; Saini, Rakesh; Chand, Pritam; Prakash, Satya; Kumar, Pawan; Barr, Iestyn David; Latief, Syed Umer; Dalal, Padma; Bahuguna, I.M.
    Understanding past glaciation and deglaciation is vital for assessing present-day glacier dynamics and response to climate change. We focus on reconstructing past glacier fluctuations in Lahaul, north-west India, a region located between arid Ladakh and the humid the Pir-Panjal range. We focus specifically on six glaciers in the Miyar and Thirot catchments of varying size, aspect and debris cover. To reconstruct past terminus fluctuations of these glaciers, we used repeat terrestrial photography and historical archives as data sets and mapped the terminus positions and latero-terminal moraines in the field along with glacier terminus mapping from high to medium resolution satellite images (e.g. Corona, Hexagon, Landsat and LISS IV). Results show that since the little ice age, all the studied glaciers have experienced terminus retreat and area loss, with average values of 1.46 and 0.9 km2, respectively. Precipitation data show a statistically significant decreasing trend during the last century with an increasing trend in annual average maximum (T max) and minimum (T min) temperature. This warming trend is more statistically significant for T min. Although total ice loss at the six studied glaciers is considerable (5.48 km2), this varies both spatially (i.e. from glacier to glacier) and temporally. We attribute this variability to topographic controls such as glacier hypsometry and another non-climatic factor, i.e. varying degree of debris cover. � 2022 Swedish Society for Anthropology and Geography.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify