Browsing by Author "Dall'Agnol, R"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Geochemical mapping in stream sediments of the Carajas Mineral Province: Background values for the Itacaiunas River watershed, Brazil(Elsevier, 2020) Salomao, G.N; Dall'Agnol, R; Sahoo, P.K; Angelica, R.S; de Medeiros, Filho C.A; Ferreira, Junior J.D.S; Sousa da, Silva M; Souza Filho, P.W.M.E; Nascimento, Junior W.D.R; da Costa, M.F; Guilherme, L.R.G; Siqueira, J.O.D.Multi-elemental analysis of high-density (regional-scale) geochemical surveys is an important strategy for multi-purpose applications, particularly in addressing geochemical background concentrations in different sampling media. This approach was applied to the Itacaiunas River Watershed (IRW), which is situated in the most prominent mining area of Brazil, the Carajas Mineral Province. Microcatchment-based mapping (~50 km2 each) covering the whole extent of IRW was delimited using remote sensing techniques and targeted for sampling. A total of 788 samples, including 27 duplicates, were collected in 2017. The <0.177 mm fraction of all samples was digested by aqua regia and 51 elements were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Geochemical maps for Fe and potentially toxic elements (PTE; As, Ba, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sn, V, and Zn) and microcatchment-based distribution maps based on threshold values were constructed for the whole IRW. The stream sediment geochemistry is mainly controlled by the local geologic setting and underlying lithology. Geochemical background (GB) values for 43 elements in stream sediments of the IRW were determined by a variety of methods (Tukey's inner fences -TIF, median +- 2*median absolute deviation - MAD, and percentile-based techniques). The results provided from the different methods show a wide range of values, with the MAD method being considered the most appropriate for deriving GB concentrations. A comparison of reference levels for PTE contemplated in the Brazilian regulation in stream sediments, the threshold concentrations obtained for the IRW area, and different study cases around the world is presented in detail. Our findings provide not only valuable information for selecting potential areas for mineral exploration surveys, but also for evaluating geochemical contaminant effects with time-varying treatments. Studies conducted to determine background values at regional scale are needed for environmental decision making, as well as to attest actions in cases of potential contamination. In the absence of these studies, misleading interpretations of the magnitude of contamination levels in a certain area may cause under- or overestimation of ecological and/or human-health risks of PTE. - 2020 Elsevier LtdItem High resolution hydrogeochemical survey and estimation of baseline concentrations of trace elements in surface water of the Itacaiúnas River Basin, southeastern Amazonia: Implication for environmental studies(Elsevier, 2019) Sahoo, Prafulla Kumar; Dall'Agnol, R; Salomão, G.N; da, SilvaFerreira Junior J; Silva, M.S; e Souza, Filho P.W.M; Powell, M.A; Angélica, R.S; Pontes P.R; da, Costa M.F; Siqueira, J.O.A high resolution systematic geochemical mapping at regional-scale is considered to be the best available method to estimate geochemical baseline levels of trace elements in stream water, and is an essential part of environmental risk assessment. This methodology was applied in a project in the Itacaiúnas River Basin, southeastern Amazon, which includes several mines of the Carajás Mineral Province (as part of the Itacaiúnas Geochemical Mapping and Background Project, ItacGMBP). A total of 1429 samples (including 55 duplicates) were collected in 2017 at 900 sites at one sample per microbasin, during both dry and rainy periods. The analyses of 34 elements were carried out using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In general, the waters are slightly alkaline and are classified as mixed Ca-Na-HCO3 type, indicating that they are mainly influenced by silicate rock weathering. Most metal concentrations in the water are low, except Fe and Mn. Seasonality explains differences in metal concentrations, with higher values being obtained in the rainy season. Baseline threshold values (BTVs) were calculated separately for both seasons by employing different statistical methods: iterative 2σ and DF preferentially delivered a more restrictive or conservative levels, which can be represenative of the natural BTVs (NBTVs), considering as the least degraded with low or no significant level of anthropogenic influence; and 98th percentile provides the ambient BTVs (ABTVs), which consists of natural plus diffuse anthropogenic input in the defined area. The ABTVs of Fe and Mn significantly exceed the WHO (1998) and CONAMA 357/05 limits. Spatial distribution indicates that Fe and Mn are not strictly related to geologic setting, rather they are highly influenced by specific local land use as well as deep weathering of the catchment and intense leaching and run-off during the rainy season. However, higher Mn occurrence in the dry period results from redox cycling of Fe and Mn via biogeochemical processes. The ABTVs of Ni, Cr, and V are controlled by bedrock lithology (geologic setting), mainly associated with mafic-ultramafic rocks; Cu is associated with two large hydrothermally mineralized copper belts. The estimation of baseline levels of As, Se, and Pb were highly limited due to of the large number of samples with results less than detection limits, in this case the 95th percentile was used for their BTVs. Geochemical data as well as anomalous values for most of the metals indicate that anthropogenic influence from point sources is highly negligible in the basin, except at a few points, where high NO3- has been observed, probably due to more intense human and livestock activity. This study demonstrates that site-specific geochemical baseline assessment is a crucial factor when evaluating surficial water conditions in a large basin. © 2019 Elsevier B.V.