Browsing by Author "Dhiman, Monisha"
Now showing 1 - 20 of 52
- Results Per Page
- Sort Options
Item APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells(Springer New York LLC, 2018) Thakur, Shweta; Dhiman, Monisha; Mantha, Anil K.Monocrotophos (MCP) and chlorpyrifos (CP) are widely used organophosphate pesticides (OPPs), speculated to be linked with human pathologies including cancer. Owing to the fact that lung cells are most vulnerable to the environmental toxins, the development and progression of lung cancer can be caused by the exposure of OPPs. The present study investigates the oxidative DNA damage response evoked by MCP and CP in human non-small cell lung carcinoma A549 cells. A549 cells were exposed to MCP and CP; cytotoxicity and reactive oxygen species (ROS) generation were measured to select the non-toxic dose. In order to establish whether MCP and CP can initiate the DNA repair and cell survival signalling pathways in A549 cells, qRT-PCR and Western blotting techniques were used to investigate the mRNA and protein expression levels of DNA base excision repair (BER)-pathway enzymes and transcription factors (TFs) involved in cell survival mechanisms. A significant increase in cell viability and ROS generation was observed when exposed to low and moderate doses of MCP and CP at different time points (24, 48 and 72?h) studied. A549 cells displayed a dose-dependent accumulation of apurinic/apyrimidinic (AP) sites after 24?h exposure to MCP advocating for the activation of AP endonuclease-mediated DNA BER-pathway. Cellular responses to MCP- and CP-induced oxidative stress resulted in an imbalance in the mRNA and protein expression of BER-pathway enzymes, viz. PARP1, OGG1, APE1, XRCC1, DNA pol ? and DNA ligase III ? at different time points. The treatment of OPPs resulted in the upregulation of TFs, viz. Nrf2, c-jun, phospho-c-jun and inducible nitric oxide synthase. Immunofluorescent confocal imaging of A549 cells indicated that MCP and CP induces the translocation of APE1 within the cytoplasm at an early 6?h time point, whereas it promotes nuclear localization after 24?h of treatment, which suggests that APE1 subcellular distribution is dynamically regulated in response to OPP-induced oxidative stress. Furthermore, nuclear colocalization of APE1 and the TF c-jun was observed in response to the treatment of CP and MCP for different time points in A549 cells. Therefore, in this study we demonstrate that MCP- and CP-induced oxidative stress alters APE1-dependent BER-pathway and also mediates cell survival signalling mechanisms via APE1 regulation, thereby promoting lung cancer cell survival and proliferation. ? 2017, Springer Science+Business Media, LLC.Item APE1/Ref-1 as an emerging therapeutic target for various human diseases: Phytochemical modulation of its functions(Nature Publishing Group, 2014) Thakur, Shweta; Sarkar, Bibekananda; Cholia, Ravi P.; Gautam, Nandini; Dhiman, Monisha; Mantha, Anil K.Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1a, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a 'hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed. ? 2014 KSBMB.Item Association of elevated levels of C-reactive protein with breast cancer, breast cancer subtypes, and poor outcome(Mosby Inc., 2018) Kaur, R.P.; Rubal, Banipal,; Vashistha, R.; Dhiman, Monisha; Munshi, AnjanaBackground and Purpose: Inflammation and caner are linked in a bidirectional manner. C-reactive protein (CRP) is an important inflammatory marker. The aim of the study was to test whether the inflammatory marker, CRP at the time of diagnosis of breast cancer is associated with metastasis, recurrence, and death in breast cancer patients from Malwa region of Punjab where breast cancer is widely feared. Material and Methods: Two hundred and forty-two breast cancer patients and 242 age and sex matched controls were included in the study. CRP levels were estimated using fully automated bio analyzer Erba200. Follow up interviews were conducted at an interval of 3, 6, 9, 12, 15, 18, 21, 24, and 27 months to determine the outcome among breast cancer patients. Results: Elevated levels of CRP were found among the diseased in comparison with controls (P < 0.0001). Higher CRP levels associated significantly with poor outcome including metastasis and recurrence among breast cancer patients [P = 0.03; 95% confidence interval; odds ratio: 2.954 (0.9125-9.561)]. Conclusion: Elevated levels of CRP associated significantly with increased risk of breast cancer and poor outcome. CRP estimation may be a simple and inexpensive tool for the risk assessment and outcome of the disease in Malwa region of Punjab where incidence of breast cancer is reported to be very high. ? 2018Item Bioremediation: A favorable perspective to eliminate heavy metals from polluted soil(Elsevier, 2022-09-30T00:00:00) Kaur, Sukhchain; Midha, Tushar; Verma, Harkomal; Muduli, Rasmi Ranjan; Dutta, Oyindril; Saini, Omprakash; Prakash, Richa; Sharma, Sandeep; Mantha, Anil K.; Dhiman, MonishaThe heavy metal contamination in the environment causes serious risk and long-term lethal effects to all living organisms due to their ability to show toxicity at low concentrations. The bio-magnification of heavy metals in the food chain is a matter of concern for public health. The persistent exposure to heavy metals such as mercury (Hg), lead (Pb), cadmium (Cd), arsenic (As), and uranium (U) cause several pathologic conditions in humans by interfering with normal cellular processes. Due to the non-biodegradable nature of these pollutants, they get accumulated for a long time in the soil. The removal of these pollutants by conventional methods is not satisfactory due to the high cost and generation of huge quantities of waste products. Hence, the use of micro-organisms is the most successful approach to remediate heavy metals from the environment due to their efficacy and financial viability. Numerous microorganisms have been employed to diminish the toxic effects of heavy metals. The combination of microorganisms and plants as a bioremediation strategy is another efficient method for heavy metal bioremediation. The chapter will summarize the heavy metal exploitation with a focus on Cd, As, Pb, and Chromium (Cr). It will also describe the various bioremediation techniques which are being used in the removal of these heavy metals from soil. � 2023 Elsevier Inc. All rights reserved.Item Brain Exosomes: Friend or Foe in Alzheimer�s Disease?(Springer, 2021-09-30T00:00:00) Kaur, Sharanjot; Verma, Harkomal; Dhiman, Monisha; Tell, Gianluca; Gigli, Gian Luigi; Janes, Francesco; Mantha, Anil K.Alzheimer�s disease (AD) is the most common neurodegenerative disease. It is known to be a multifactorial disease and several causes are associated with its occurrence as well as progression. However, the accumulation of amyloid beta (A?) is widely considered its major pathogenic hallmark. Additionally, neurofibrillary tangles (NFT), mitochondrial dysfunction, oxidative stress, and aging (cellular senescence) are considered as additional hits affecting the disease pathology. Several studies are now suggesting important role of inflammation in AD, which shifts our thought towards the brain�s resident immune cells, microglia, and astrocytes; how they interact with neurons; and how these interactions are affected by intra and extracellular stressful factors. These interactions can be modulated by different mechanisms and pathways, in which exosomes could play an important role. Exosomes are multivesicular bodies secreted by nearly all types of cells. The exosomes secreted by glial cells or neurons affect the interactions and thus the physiology of these cells by transmitting miRNAs, proteins, and lipids. Exosomes can serve as a friend or foe to the neuron function, depending upon the carried signals. Exosomes, from the healthy microenvironment, may assist neuron function and health, whereas, from the stressed microenvironment, they carry oxidative and inflammatory signals to the neurons and thus prove detrimental to the neuronal function. Furthermore, exosomes can cross the blood�brain barrier (BBB), and from the blood plasma they can enter the brain cells and activate microglia and astrocytes. Exosomes can transport A? or Tau, cytokines, miRNAs between the cells, and alter the physiology of recipient cells. They can also assist in A? clearance and regulation of synaptic activity. The exosomes derived from different cells play different roles, and this field is still in its infancy stage. This review advocates exosomes� role as a friend or foe in neurodegenerative diseases, especially in the case of Alzheimer�s disease. � 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Brain Exosomes: Friend or Foe in Alzheimer�s Disease?(Springer, 2021-09-30T00:00:00) Kaur, Sharanjot; Verma, Harkomal; Dhiman, Monisha; Tell, Gianluca; Gigli, Gian Luigi; Janes, Francesco; Mantha, Anil K.Alzheimer�s disease (AD) is the most common neurodegenerative disease. It is known to be a multifactorial disease and several causes are associated with its occurrence as well as progression. However, the accumulation of amyloid beta (A?) is widely considered its major pathogenic hallmark. Additionally, neurofibrillary tangles (NFT), mitochondrial dysfunction, oxidative stress, and aging (cellular senescence) are considered as additional hits affecting the disease pathology. Several studies are now suggesting important role of inflammation in AD, which shifts our thought towards the brain�s resident immune cells, microglia, and astrocytes; how they interact with neurons; and how these interactions are affected by intra and extracellular stressful factors. These interactions can be modulated by different mechanisms and pathways, in which exosomes could play an important role. Exosomes are multivesicular bodies secreted by nearly all types of cells. The exosomes secreted by glial cells or neurons affect the interactions and thus the physiology of these cells by transmitting miRNAs, proteins, and lipids. Exosomes can serve as a friend or foe to the neuron function, depending upon the carried signals. Exosomes, from the healthy microenvironment, may assist neuron function and health, whereas, from the stressed microenvironment, they carry oxidative and inflammatory signals to the neurons and thus prove detrimental to the neuronal function. Furthermore, exosomes can cross the blood�brain barrier (BBB), and from the blood plasma they can enter the brain cells and activate microglia and astrocytes. Exosomes can transport A? or Tau, cytokines, miRNAs between the cells, and alter the physiology of recipient cells. They can also assist in A? clearance and regulation of synaptic activity. The exosomes derived from different cells play different roles, and this field is still in its infancy stage. This review advocates exosomes� role as a friend or foe in neurodegenerative diseases, especially in the case of Alzheimer�s disease. � 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Connecting the Link between Oxidative Stress, Dietary Antioxidants and Hypertension(CRC Press, 2023-06-12T00:00:00) Kaur, Sukhchain; Midha, Tushar; Dutta, Oyndril; Saini, Om Prakash; Muduli, Rasmi Ranjan; Mantha, Anil K.; Dhiman, MonishaCardiovascular disorders such as hypertension, coronary heart disease (CHD), cerebrovascular disease, etc. accounts for millions of deaths per year and among these, hypertension (i.e. increased blood pressure) acts as a silent killer and is responsible for 7.5 billion deaths worldwide. Previously, abnormal functioning of the Renin Angiotensin Aldosterone System (RAAS) was considered as a risk factor for hypertension but in recent times, oxidative stress is a key factor in exaggerating the disease progression. In hypertension, oxidative stress damages the biomolecules, decreases the NO availability and endothelial functioning. The use of external antioxidants as therapeutic agents is an excellent approach in the treatment of hypertension. These antioxidants can reverse the deleterious effects of oxidative stress and recover normal cellular homeostasis. The book chapter is focused on the various natural antioxidants and their role as anti-hypertensive agents. � 2024 selection and editorial matter, Victor R. Preedy, Vinood B. Patel, and Rajkumar Rajendram.Item Correlative study on heavy metal-induced oxidative stress and hypertension among the rural population of Malwa Region of Punjab, India(Springer Science and Business Media Deutschland GmbH, 2022-07-26T00:00:00) Kaur, Sukhchain; Garg, Neha; Rubal, Rubal; Dhiman, MonishaHeavy metal-induced toxicity contributes to the progression of various metabolic disorders and possible mechanisms involved in disease progression are not well established. In this study, the correlation of heavy metal exposure and hypertension have been demonstrated. The results showed that in hypertensive subjects, the lipid profiles (triglycerides, LDL-C, HDL-C, and total cholesterol) and cardiac markers (CK-MB and LDH) were altered abruptly. As a consequence of heavy- induced oxidative stress, the oxidants (TBARS and protein carbonyls) and antioxidants (SOD, GSH, and TAC) were significantly increased and decreased, respectively in hypertension�subjects. The concentrations of heavy metals (Pb, Cd, and As) exceeded the permissible limits in hypertensive subjects. The Nrf-2 genotyping indicated that heavy metals may induce mutations at molecular level. The results of correlation analysis revealed that�the heavy metals interact with cellular components and interfere with metabolic processes which then�results in disturbed lipid profile, enhanced oxidative stress, and reduced antioxidant status. The current study systematically estimated the association of hair and nail heavy metal concentrations with hypertension among the population residing in the Malwa region of Punjab. The proposed study highlighted that heavy metals act as a silent risk factor in the hypertension progression in the population of Malwa region. Future studies are required to confirm current findings and further scrutinize the effect of heavy metals exposure in early adulthood, early, and late mid-life to develop metabolic complications such as hypertension. � 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Item Correlative study on heavy metal-induced oxidative stress and hypertension among the rural population of Malwa Region of Punjab, India(Springer Science and Business Media Deutschland GmbH, 2022-07-26T00:00:00) Kaur, Sukhchain; Garg, Neha; Rubal, Rubal; Dhiman, MonishaHeavy metal-induced toxicity contributes to the progression of various metabolic disorders and possible mechanisms involved in disease progression are not well established. In this study, the correlation of heavy metal exposure and hypertension have been demonstrated. The results showed that in hypertensive subjects, the lipid profiles (triglycerides, LDL-C, HDL-C, and total cholesterol) and cardiac markers (CK-MB and LDH) were altered abruptly. As a consequence of heavy- induced oxidative stress, the oxidants (TBARS and protein carbonyls) and antioxidants (SOD, GSH, and TAC) were significantly increased and decreased, respectively in hypertension�subjects. The concentrations of heavy metals (Pb, Cd, and As) exceeded the permissible limits in hypertensive subjects. The Nrf-2 genotyping indicated that heavy metals may induce mutations at molecular level. The results of correlation analysis revealed that�the heavy metals interact with cellular components and interfere with metabolic processes which then�results in disturbed lipid profile, enhanced oxidative stress, and reduced antioxidant status. The current study systematically estimated the association of hair and nail heavy metal concentrations with hypertension among the population residing in the Malwa region of Punjab. The proposed study highlighted that heavy metals act as a silent risk factor in the hypertension progression in the population of Malwa region. Future studies are required to confirm current findings and further scrutinize the effect of heavy metals exposure in early adulthood, early, and late mid-life to develop metabolic complications such as hypertension. � 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Item A cross-sectional study to correlate antioxidant enzymes, oxidative stress and inflammation with prevalence of hypertension(Elsevier Inc., 2022-10-28T00:00:00) Kaur, Sukhchain; Rubal; Kaur, Satveer; Kaur, Amandeep; Kaur, Sandeep; Gupta, Sushil; Mittal, Sunil; Dhiman, MonishaAims: Hypertension a multifactorial consequence of environmental factors, life style and genetics is the well-recognized risk factor contributing to coronary heart diseases. The antioxidant imbalance, excessive reactive oxygen species (ROS) leads to oxidative stress which is pivotal in progression of hypertension. The present study aims to understand the complex interaction between oxidative stress, inflammation and antioxidant system which is crucial to maintain cellular homeostasis which further can exaggerate hypertension pathophysiology. Materials and methods: The metabolic profile of hypertensive and normotensive subjects from Malwa region, Punjab was compared by estimating lipid profile, cardiac, hepatic and renal markers. The oxidative stress markers (protein carbonyls and lipid peroxidation), inflammatory markers (Nitric oxide, Myeloperoxidase and advanced oxygen protein products), and antioxidant enzymes (Superoxide Dismutase, Catalase, and Total Antioxidant Capacity) were analyzed. Key findings: It is observed that the metabolic markers are altered in hypertensive subjects which further these subjects showed increased oxidative, inflammatory profile and compromised antioxidant status when compared with normotensive subjects. Co-relation analysis validated the involvement of inflammation and oxidative stress in impaired endothelial function and vital organ damage. Significance of study: These markers may act as early indicators of hypertension which usually do not show any physical symptoms, thus can be diagnosed and treated at the earliest. The current study suggests that disturbed homeostasis, a consequence of altered interaction between antioxidant system and inflammatory events raises the oxidative stress levels which eventually leads to hypertension and associated complications. These indicators can serve as early indicators of future chronic complications of hypertension. � 2022Item Curcumin revitalizes Amyloid beta (25–35)-induced and organophosphate pesticides pestered neurotoxicity in SH-SY5Y and IMR-32 cells via activation of APE1 and Nrf2(Springer, 2017) Sarkar, Bibekananda; Dhiman, Monisha; Mittal, Sunil; Mantha, Anil K.Amyloid beta (Aβ) peptide deposition is the primary cause of neurodegeneration in Alzheimer’s disease (AD) pathogenesis. Several reports point towards the role of pesticides in the AD pathogenesis, especially organophosphate pesticides (OPPs). Monocrotophos (MCP) and Chlorpyrifos (CP) are the most widely used OPPs. In this study, the role of MCP and CP in augmenting the Aβ-induced oxidative stress associated with the neurodegeneration in AD has been assessed in human neuroblastoma IMR-32 and SH-SY5Y cell lines. From the cell survival assay, it was observed that MCP and CP reduced cell survival both dose- and time-dependently. Nitro blue tetrazolium (NBT) based assay for determination of intracellular reactive oxygen species (ROS) demonstrated that Aβ(25–35), MCP or CP produce significant oxidative stress alone or synergistically in IMR-32 and SH-SY5Y cells, while pretreatment of curcumin reduced ROS levels significantly in all treatment combinations. In this study, we also demonstrate that treatment of Aβ(25–35) and MCP upregulated inducible nitric oxide synthase (iNOS/NOS2) whereas, no change was observed in neuronal nitric oxide synthase (nNOS/NOS1), but down-regulation of the nuclear factor erythroid 2-related factor 2 (Nrf2) level was observed. While curcumin pretreatment resulted in upregulation of iNOS and Nrf2 proteins. Also, the expression of key DNA repair enzymes APE1, DNA polymerase beta (Pol β), and PARP1 were found to be downregulated upon treatment with MCP, Aβ(25–35) and their combinations at 24 h and 48 h time points. In this study, pretreatment of curcumin to the SH-SY5Y cells enhanced the expression of DNA repair enzymes APE1, pol β, and PARP1 enzymes to counter the oxidative DNA base damage via base excision repair (BER) pathway, and also activated the antioxidant element (ARE) via Nrf2 upregulation. Furthermore, the immunofluorescent confocal imaging studies in SH-SY5Y and IMR-32 cells treated with Aβ(25–35) and MCP-mediated oxidative stress and their combinations at different time periods suggesting for cross-talk between the two proteins APE1 and Nrf2. The APE1’s association with Nrf2 might be associated with the redox function of APE1 that might be directly regulating the ARE-mediated neuronal survival mechanisms.Item Design, synthesis and biological evaluation of novel indole-benzimidazole hybrids targeting estrogen receptor alpha (ER-?)(Elsevier Masson SAS, 2018) Singla R.; Gupta K.B.; Upadhyay S.; Dhiman, Monisha; Jaitak V.In the course of efforts to develop novel selective estrogen receptor modulators (SERMs), indole-benzimidazole hybrids were designed and synthesised by fusing the indole nucleus with benzimidazole. All the compounds were first inspected for anti-proliferative activity using ER-? responsive T47D breast cancer cell lines and ER-? binding assay. From this study, two representative bromo substituted compounds 5f and 8f were found to be most active and thus were escalated for gene expression studies for targeting ER-?. Cell imaging experiment clearly suggest that compounds were able to cross cell membrane and accumulate thus causing cytotoxicity. RT-PCR and Western blotting experiments further supported that both compounds altered the expression of mRNA and receptor protein of ER-?, thereby preventing the further transactivation and signalling pathway in T47D cells lines. Structural investigation from induced fit simulation study suggest that compound 5f and 8f bind in antagonistic conformation similar to bazedoxifene by extensive hydrogen bonding and Van der Waals forces. All these results strongly indicate that compound 5f and 8f represents a novel potent ER-? antagonist properties and will proved promising in the discovery of SERM for the management of breast cancer.Item Ginkgolide B Revamps Neuroprotective Role of Apurinic/Apyrimidinic Endonuclease 1 and Mitochondrial Oxidative Phosphorylation Against Ab 25–35 -Induced Neurotoxicity in Human Neuroblastoma Cells(Wiley, 2015) Kaur, Navrattan; Dhiman, Monisha; Perez-Polo, J. Regino; Mantha, Anil K.Accumulating evidence points to roles for oxidative stress, amyloid beta (Aβ), and mitochondrial dysfunction in the pathogenesis of Alzheimer's disease (AD). In neurons, the base excision repair pathway is the predominant DNA repair (BER) pathway for repairing oxidized base lesions. Apurinic/apyrimidinic endonuclease 1 (APE1), a multifunctional enzyme with DNA repair and reduction–oxidation activities, has been shown to enhance neuronal survival after oxidative stress. This study seeks to determine 1) the effect of Aβ25–35 on reactive oxygen species (ROS)/reactive nitrogen species (RNS) levels, 2) the activities of respiratory complexes (I, III, and IV), 3) the role of APE1 by ectopic expression, and 4) the neuromodulatory role of ginkgolide B (GB; from the leaves of Ginkgo biloba). The pro-oxidant Aβ25–35 peptide treatment increased the levels of ROS/RNS in human neuroblastoma IMR-32 and SH-SY5Y cells, which were decreased after pretreatment with GB. Furthermore, the mitochondrial APE1 level was found to be decreased after treatment with Aβ25–35 up to 48 hr, and the level was increased significantly in cells pretreated with GB. The oxidative phosphorylation (OXPHOS; activities of complexes I, III, and IV) indicated that Aβ25–35 treatment decreased activities of complexes I and IV, and pretreatment with GB and ectopic APE1 expression enhanced these activities significantly compared with Aβ25–35 treatment. Our results indicate that ectopic expression of APE1 potentiates neuronal cells to overcome the oxidative damage caused by Aβ25–35. In addition, GB has been shown to modulate the mitochondrial OXPHOS against Aβ25–35-induced oxidative stress and also to regulate the levels of ROS/RNS in the presence of ectopic APE1. This study presents findings from a new point of view to improve therapeutic potential for AD via the synergistic neuroprotective role played by APE1 in combination with the phytochemical GB. © 2015 Wiley Periodicals, Inc.Item Gliadin induced oxidative stress and altered cellular responses in human intestinal cells: An in-vitro study to understand the cross-talk between the transcription factor Nrf-2 and multifunctional APE1 enzyme(John Wiley and Sons Inc, 2022-05-09T00:00:00) Gupta, Kunj Bihari; Dhiman, Monisha; Mantha, Anil KumarThe present study examined the wheat protein gliadin-induced oxidative and nitrosative stress and its downstream responses in human intestinal HCT-116 and HT-29 cells. The beneficial role of dietary phytochemical curcumin and role of multifunctional enzyme Apurinic/aprymidinic endonuclease 1 (APE1) a major player involved in the base excision repair (BER)-pathway in gliadin intolerant intestinal HCT-116 and HT-29 cell lines were evaluated as an in vitro model study. The cultured cells were exposed to gliadin protein, H2O2, and curcumin followed by the assessment of oxidative stress and the consequences were measured using spectrophotometric, PCR, flow cytometer, Western blotting, confocal microscopy, and other methods. Results demonstrate that a 3 h pretreatment of curcumin, followed by the treatment of gliadin protein for 24 h time period protected both the HCT-116 and HT-29 cells via: (i) decreasing the ROS/RNS, restoring the mitochondrial transmembrane potential; (ii) re-establishing the cellular antioxidant defense system (superoxide dismutase, catalase, and GSH); (iii) enhancing the functions of APE1 viz. endonuclease activity and redox activation of transcription factor Nrf-2, the later binds with the antioxidant response elements (ARE) and activates downstream targets involved in cell survival. The cross-talk between APE1 and Nrf-2 was also established using immunofluorescence imaging and co-immunoprecipitation assays. In conclusion, gliadin protein induces oxidative/nitrosative stress, mitochondrial dysfunction and it damages cellular biomolecules in the intestinal cells. Hence it can be attributed to the tissue damage and disease pathogenesis in wheat intolerance-associated intestinal diseases. The gliadin-induced stress and its consequences are significantly reduced by the pretreatment of curcumin via BER-pathway and ARE-pathway; which is evident through the interaction between these two essential proteins. Hence suggesting for the intervention of curcumin and other natural dietary phytochemicals-based disease management and treatment of gliadin intolerance associated intestinal diseases like celiac disease. � 2022 Wiley Periodicals LLC.Item Gliadin induced oxidative stress and altered cellular responses in human intestinal cells: An in-vitro study to understand the cross-talk between the transcription factor Nrf-2 and multifunctional APE1 enzyme(John Wiley and Sons Inc, 2022-05-09T00:00:00) Gupta, Kunj Bihari; Dhiman, Monisha; Mantha, Anil KumarThe present study examined the wheat protein gliadin-induced oxidative and nitrosative stress and its downstream responses in human intestinal HCT-116 and HT-29 cells. The beneficial role of dietary phytochemical curcumin and role of multifunctional enzyme Apurinic/aprymidinic endonuclease 1 (APE1) a major player involved in the base excision repair (BER)-pathway in gliadin intolerant intestinal HCT-116 and HT-29 cell lines were evaluated as an in vitro model study. The cultured cells were exposed to gliadin protein, H2O2, and curcumin followed by the assessment of oxidative stress and the consequences were measured using spectrophotometric, PCR, flow cytometer, Western blotting, confocal microscopy, and other methods. Results demonstrate that a 3 h pretreatment of curcumin, followed by the treatment of gliadin protein for 24 h time period protected both the HCT-116 and HT-29 cells via: (i) decreasing the ROS/RNS, restoring the mitochondrial transmembrane potential; (ii) re-establishing the cellular antioxidant defense system (superoxide dismutase, catalase, and GSH); (iii) enhancing the functions of APE1 viz. endonuclease activity and redox activation of transcription factor Nrf-2, the later binds with the antioxidant response elements (ARE) and activates downstream targets involved in cell survival. The cross-talk between APE1 and Nrf-2 was also established using immunofluorescence imaging and co-immunoprecipitation assays. In conclusion, gliadin protein induces oxidative/nitrosative stress, mitochondrial dysfunction and it damages cellular biomolecules in the intestinal cells. Hence it can be attributed to the tissue damage and disease pathogenesis in wheat intolerance-associated intestinal diseases. The gliadin-induced stress and its consequences are significantly reduced by the pretreatment of curcumin via BER-pathway and ARE-pathway; which is evident through the interaction between these two essential proteins. Hence suggesting for the intervention of curcumin and other natural dietary phytochemicals-based disease management and treatment of gliadin intolerance associated intestinal diseases like celiac disease. � 2022 Wiley Periodicals LLC.Item Glycyrrhiza glabra (Licorice) root extract attenuates doxorubicin-induced cardiotoxicity via alleviating oxidative stress and stabilising the cardiac health in H9c2 cardiomyocytes(Elsevier, 2020) Upadhyay, S; Mantha, A.K; Dhiman, MonishaEthnopharmacological relevance: Doxorubicin (DOX) is an effective anti-neoplastic drug, however; it has downside effects on cardiac health and other vital organs. The herbal remedies used in day to day life may have a beneficial effect without disturbing the health of the vital organs. Glycyrrhiza glabra L. is a ligneous perennial shrub belonging to Leguminosae/Fabaceae/Papilionaceae family growing in Mediterranean region and Asia and widespread in Turkey, Italy, Spain, Russia, Syria, Iran, China, India and Israel. Commonly known as mulaithi in north India, G. glabra has glycyrrhizin, glycyrrhetic acid, isoliquiritin, isoflavones, etc., which have been reported for several pharmacological activities such as anti-demulcent, anti-ulcer, anti-cancer, anti-inflammatory and anti-diabetic. Aim of the study: The objective of the present study is to investigate the interaction between the molecular factors like PPAR-?/? and SIRT-1 during cardiac failure arbitrated by DOX under in vitro conditions and role of Glycyrrhiza glabra (Gg) root extract in alleviating these affects. Materials and methods: In the present study, we have examined the DOX induced responses in H9c2 cardiomyocytes and investigated the role of phytochemical Glycyrrhiza glabra in modulating these affects. MTT assay was done to evaluate the cell viability, Reactive Oxygen Species (ROS)/Reactive Nitrogen Species (RNS) levels, mitochondrial ROS, mitochondrial membrane potential was estimated using fluorescent probes. The oxidative stress in terms of protein carbonylation, lipid peroxidation and DNA damage was detected via spectrophotometric methods and immune-fluorescence imaging. The cardiac markers and interaction between SIRT-1 and PPAR-?/? was measured using Real-Time PCR, Western blotting and Co-immunoprecipitation based studies. Results: The Glycyrrhiza glabra (Gg) extracts maintained the membrane integrity and improved the lipid homeostasis and stabilized cytoskeletal element actin. Gg phytoextracts attenuated aggravated ROS level, repaired the antioxidant status and consequently, assisted in repairing the DNA damage and mitochondrial function. Further, the expression of hypertrophic markers in the DOX treated cardiomyocytes reconciled the expression factors both at the transcriptional and translational levels after Gg treatment. SIRT-1 mediated pathway and its downstream activator PPARs are significant in maintaining the cellular functions. It was observed that the Gg extract allows regaining the nuclear SIRT-1 and PPAR-? level which was otherwise reduced with DOX treatment in H9c2 cardiomyocytes. The co-immunoprecipitation (Co-IP) documented that SIRT-1 interacts with PPAR-? in the untreated control H9c2 cardiomyocytes whereas DOX treatment interferes and diminishes this interaction however the Gg treatment maintains this interaction. Knocking down SIRT-1 also downregulated expression of PPAR-? and PPAR-? in DOX treated cells and Gg treatment was able to enhance the expression of PPAR-? and PPAR-? in SIRT-1 knocked down cardiomyocytes. Conclusions: The antioxidant property of Gg defend the cardiac cells against the DOX induced toxicity via; 1) reducing the oxidative stress, 2) maintaining the mitochondrial functions, 3) regulating lipid homeostasis and cardiac metabolism through SIRT-1 pathway, and 4) conserving the cardiac hypertrophy and hence preserving the cardiomyocytes health. Therefore, Gg can be recommended as a healthy supplement with DOX towards cancer therapeutics associated cardiotoxicity. - 2020Item Herbal Remedies for Improving Cancer Treatment Through Modulation of Redox Balance(Springer Singapore, 2022-09-28T00:00:00) Kaur, Sukhchain; Verma, Harkomal; Kaur, Sharanjot; Singh, Subham; Mantha, Anil K.; Dhiman, MonishaThe redox modulation induced by oxidative stress is one of the major cause of the metabolic and inflammatory disorders including cancer. The reactive oxygen species (ROS) produced by various sources in the cell shift the redox homeostasis of cells towards more oxidizing or acidic environment. This shift results in the alterations of normal physiologic functioning of biomolecules as well as causes damage to these biomolecules (proteins, lipids, and DNA/RNA). The excessive ROS and redox modulation are the key factors that support growth, progression, and survival of cancer cells. ROS-induced redox modulation further activates pro-tumorigenic cellular pathways for e.g., PI3K/AKT, HIF-1, and MAPK signaling pathways as well as hinders epigenetic signaling. Increasing evidences demonstrate that long-term side effects of anti-cancer chemotherapy are major concern of medical sciences although modern treatments are quite effective. The combination of various herbal formulations with anti-cancer therapy shows improvement in treatment effectiveness in cancer patients. Bioactive compounds present in herbal formulations possess antioxidant and anti-cancer properties that help in the regulation of redox status of cancer cells. The synergetic effects of herbal remedies along with conventional treatment are proven as novel therapeutics in cancer progression management. Clinical studies have shown that broad range of herbs and bioactive compounds from various plants having antioxidant, anti-inflammatory properties can suppress the carcinogenesis. In this chapter we will discuss the role of various plants such as Glycyrrhiza glabra, Picrorhiza kurroa, Tinospora cordifolia, Curcuma longa, Ocimum sanctum, Viola odorata, and bioactive compound ferulic acid found in various cereals. The chapter will also focus on various mechanisms involved in the modulation of chemo-toxicity and improvement of efficacy of conventional anti-cancer therapies by these plants. � Springer Nature Singapore Pte Ltd. 2022.Item Hydrogen peroxide-induced oxidative stress and its impact on innate immune responses in lung carcinoma A549 cells(Springer, 2019) Upadhyay, S; Vaish, S; Dhiman, MonishaThe immune responses, involved in recognition of cancer-specific antigens, are of particular interest as this may provide major leads towards developing new vaccines and antibody therapies against cancer. An effective treatment for cancer is still a challenge because there are many mechanisms through which the tumor cells can escape the host immune surveillance. Oxidative stress or respiratory burst which is host’s mechanism to kill the foreign particles is used as defense mechanism by the tumor cells. The tumor cells uses this oxidative stress to form neo-antigens which in turn makes them undetectable and can escape the host immune surveillance. The human lung carcinoma (A549) cells were treated using 100 µM H 2 O 2 to induce oxidative stress, and the extent oxidative modifications were detected at the level of membrane and proteins in form of lipid peroxidation and protein carbonyls respectively. Nitric oxide and iNOS levels were estimated by Griess assay and immunostaining, respectively. The oxidized tumor proteins were visualized on one-dimensional SDS–PAGE. The H 2 O 2 -treated (15 min and 24 h post-treatment) A549 cells were co-cultured with THP-1 cells to subsequently visualize the phagocytic activity by Giemsa and CFSE staining to understand the role of neo (oxidized) tumor antigens in eliciting alteration in immune responses. A significant decline in the percent engulfed cells and decrease in the levels of reactive oxygen species was observed. Immunohistostaining for p47 phox , which is an important indicator of the oxygen-dependent phagocytosis, showed a decrease in its levels when cells were treated for only 15 min with 100 µM H 2 O 2 , whereas at 24-h post-treatment there was no change in the p47 phox levels. The study has established oxidative stress as a new pathogenic mechanism of carcinogenesis and will open new avenues for clinical intervention, adjunct therapies for cancer, and its control at the initial stage by targeting these neo-antigens. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.Item Identification of novel indole based heterocycles as selective estrogen receptor modulator(Academic Press Inc., 2018) Singla, Ramit; Prakash, Kunal; Bihari Gupta, Kunj; Upadhyay, Shishir; Dhiman, Monisha; Jaitak, VikasIn the present study, we have designed and synthesized indole derivatives by coalescing the indole nucleus with chromene carbonitrile and dihydropyridine nucleus. Two compounds 5c and 6d were selected from series I and II after sequential combinatorial library generation, docking, absorption, distribution, metabolism and excretion (ADME) filtering, anti-proliferative activity, cytotoxicity, and ER-? competitor assay kit by utilizing estrogen receptor-? (ER-?) dominant T47D BC cells line and PBMCs (Peripheral Blood Mononuclear Cells). Cell imaging experiment suggested that both the compounds successfully cross cellular biomembrane and accumulate in nuclear, cytoplasmic and plasma membrane region. Semiquantitative RT-PCR and Western blotting experiments further supported that both compounds reduced the expression of mRNA and receptor protein of ER-? thereby preventing downstream transactivation and signaling pathway in T47D cells line. Current findings imply that 5c and 6d represent novel ER-? antagonists and may be used in the development of chemotherapy for the management of BC. ? 2018 Elsevier Inc.Item Identification of novel indole based heterocycles as selective estrogen receptor modulator.(Elsevier, 2018) Singla, Ramit; Prakash, Kunal; Gupta Kunj Bihari; Upadhyay, Shishir; Dhiman, Monisha; Jaitak, VikasIn the present study, we have designed and synthesized indole derivatives by coalescing the indole nucleus with chromene carbonitrile and dihydropyridine nucleus. Two compounds 5c and 6d were selected from series I and II after sequential combinatorial library generation, docking, absorption, distribution, metabolism and excretion (ADME) filtering, anti-proliferative activity, cytotoxicity, and ER-α competitor assay kit by utilizing estrogen receptor-α (ER-α) dominant T47D BC cells line and PBMCs (Peripheral Blood Mononuclear Cells). Cell imaging experiment suggested that both the compounds successfully cross cellular biomembrane and accumulate in nuclear, cytoplasmic and plasma membrane region. Semiquantitative RT-PCR and Western blotting experiments further supported that both compounds reduced the expression of mRNA and receptor protein of ER-α, thereby preventing downstream transactivation and signaling pathway in T47D cells line. Current findings imply that 5cand 6d represent novel ER-α antagonists and may be used in the development of chemotherapy for the management of BC.
- «
- 1 (current)
- 2
- 3
- »