Browsing by Author "Dogan?i?, Dragana"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Assessing Sustainable Ecotourism Opportunities in Western Rajasthan, India, through Advanced Geospatial Technologies(Multidisciplinary Digital Publishing Institute (MDPI), 2023-07-25T00:00:00) Chandel, Rajeev Singh; Kanga, Shruti; Singh, Suraj Kumar; �urin, Bojan; Or�uli?, Olga Bjelotomi?; Dogan?i?, Dragana; Hunt, Julian DavidThe present study focuses on finding potential sites for ecotourism development using GIS and remote-sensing-based weightage sum overlay techniques in Western Rajasthan, India. Ecotourism is one of the fastest growing and revenue-making sectors incorporating a sustainable future. Western Rajasthan has a broad scope to develop tourism-based activity in various ways, mainly through cultural heritage, historical and archaeological wonders, and rare wildlife. Weightage sum overlay analysis is a useful and simple tool to compare each thematic layer. These values are based on various factors and understanding taken during the study. For this purpose, different data types have been taken from the USGS website. Arc GIS 10.8 and ERDAS Imagine software 2015 have been utilized to process the data. This research incorporates seven thematic layers, i.e., elevation, proximity to streams, land use/cover, population density, road connectivity, proximity to protected areas, and heritage hotspots. Based on the physical and cultural characteristics of Western Rajasthan, the weightage of each thematic layer has been decided, which is finally overlaid using Arc GIS software. After processing all the thematic layers, we finally get an outcome in the form of a suitability map. The final suitability map represents five suitability classes that divide the total area into the following categories, very high (37.31%), high (26.85%), moderate (7.89%), low (0.83%), and very low (27.12%), which represents the potential of ecotourism in Western Rajasthan. � 2023 by the authors.Item Predicting Future Land Use Utilizing Economic and Land Surface Parameters with ANN and Markov Chain Models(Multidisciplinary Digital Publishing Institute (MDPI), 2023-09-18T00:00:00) Rani, Ankush; Gupta, Saurabh Kumar; Singh, Suraj Kumar; Meraj, Gowhar; Kumar, Pankaj; Kanga, Shruti; ?urin, Bojan; Dogan?i?, DraganaThe main aim of this study is to comprehensively analyze the dynamics of land use and land cover (LULC) changes in the Bathinda region of Punjab, India, encompassing historical, current, and future trends. To forecast future LULC, the Cellular Automaton�Markov Chain (CA) based on artificial neural network (ANN) concepts was used using cartographic variables such as environmental, economic, and cultural. For segmenting LULC, the study used a combination of ML models, such as support vector machine (SVM) and Maximum Likelihood Classifier (MLC). The study is empirical in nature, and it employs quantitative analyses to shed light on LULC variations through time. The result indicates that the barren land is expected to shrink from 55.2 km2 in 1990 to 5.6 km2 in 2050, signifying better land management or increasing human activity. Vegetative expanses, on the other hand, are expected to rise from 81.3 km2 in 1990 to 205.6 km2 in 2050, reflecting a balance between urbanization and ecological conservation. Agricultural fields are expected to increase from 2597.4 km2 in 1990 to 2859.6 km2 in 2020 before stabilizing at 2898.4 km2 in 2050. Water landscapes are expected to shrink from 13.4 km2 in 1990 to 5.6 km2 in 2050, providing possible issues for water resources. Wetland regions are expected to decrease, thus complicating irrigation and groundwater reservoir sustainability. These findings are confirmed by strong statistical indices, with this study�s high kappa coefficients of Kno (0.97), Kstandard (0.95), and Klocation (0.97) indicating a reasonable level of accuracy in CA prediction. From the result of the F1 score, a significant issue was found in MLC for segmenting vegetation, and the issue was resolved in SVM classification. The findings of this study can be used to inform land use policy and plans for sustainable development in the region and beyond. � 2023 by the authors.