Browsing by Author "Gupta, Madhu"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Melittin: a possible regulator of cancer proliferation in preclinical cell culture and animal models(Springer Science and Business Media Deutschland GmbH, 2023-11-03T00:00:00) Haque, Shafiul; Hussain, Arif; Joshi, Hemant; Sharma, Ujjawal; Sharma, Bunty; Aggarwal, Diwakar; Rani, Isha; Ramniwas, Seema; Gupta, Madhu; Tuli, Hardeep SinghBackground: Melittin is a water-soluble cationic peptide derived from bee venom that has been thoroughly studied for the cure of different cancers. However, the unwanted interactions of melittin produce hemolytic and cytotoxic effects that hinder their therapeutic applications. To overcome the shortcomings, numerous research groups have adopted different approaches, including conjugation with tumor-targeting proteins, gene therapy, and encapsulation in nanoparticles, to reduce the non-specific cytotoxic effects and potentiate their anti-cancerous activity. Purpose: This article aims to provide mechanistic insights into the chemopreventive activity of melittin and its nanoversion in combination with standard anti-cancer drugs for the treatment of cancer. Methods: We looked over the pertinent research on melittin's chemopreventive properties in online databases such as PubMed and Scopus. Conclusion: In the present article, the anti-cancerous effects of melittin on different cancers have been discussed very nicely, as have their possible mechanisms of action to act against different tumors. Besides, it interacts with different signal molecules that regulate the diverse pathways of cancerous cells, such as cell cycle arrest, apoptosis, metastasis, angiogenesis, and inflammation. We also discussed the recent progress in the synergistic combination of melittin with standard anti-cancer drugs and a nano-formulated version of melittin for targeted delivery to improve its anticancer potential. Graphical abstract: [Figure not available: see fulltext.] � 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Item Temozolomide and flavonoids against glioma: from absorption and metabolism to exosomal delivery(Springer Science and Business Media Deutschland GmbH, 2023-08-11T00:00:00) Verma, Priyanka; Joshi, Hemant; Singh, Tejveer; Sharma, Bunty; Sharma, Ujjawal; Ramniwas, Seema; Rana, Rashmi; Gupta, Madhu; Kaur, Ginpreet; Tuli, Hardeep SinghPatients with glioblastoma multiforme and anaplastic astrocytoma are treated with temozolomide. Although it has been demonstrated that temozolomide increases GBM patient survival, it has also been connected to negative immune-related adverse effects. Numerous research investigations have shown that flavonoids have strong antioxidant and chemo-preventive effects. Consequently, it might lessen chemotherapeutic medicines� side effects while also increasing therapeutic effectiveness. The need for creating innovative, secure, and efficient drug carriers for cancer therapy has increased over time. Recent research indicates that exosomes have enormous potential to serve as carriers and cutting-edge drug delivery systems to the target cell. In recent years, researchers have been paying considerable attention to exosomes because of their favorable biodistribution, biocompatibility, and low immunogenicity. In the present review, the mechanistic information of the anti-glioblastoma effects of temozolomide and flavonoids coupled with their exosomal delivery to the targeted cell has been discussed. In addition, we discuss the safety aspects of temozolomide and flavonoids against glioma. The in-depth information of temozolomide and flavonoids action via exosomal delivery can unravel novel strategies to target Glioma. � 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.