Browsing by Author "Jacinto, Carlos"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item BiOBr/ZnWO4 heterostructures: An important key player for enhanced photocatalytic degradation of rhodamine B dye and antibiotic ciprofloxacin(Elsevier Ltd, 2022-11-07T00:00:00) Santana, Rafael W.R.; Lima, A.E.B.; Souza, Luiz K.C. de; Santos, Evelyn C.S.; Santos, C.C.; Menezes, A.S. de; Sharma, Surender K.; Cavalcante, L.S.; Maia da Costa, Marcelo E.H.; Sales, T.O.; Jacinto, Carlos; Luz, G.E.; Almeida, M.A.P.We report a facile synthesis of p-BiOBr/n-ZnWO4 heterostructures by hydrothermal/precipitation method as an important key player to enhance the photocatalytic degradation of Rhodamine B (RhB) dye and ciprofloxacin antibiotic. The structural and microstructural features confirm that p-BiOBr/n-ZnWO4 heterostructures display a mixed tetragonal/monoclinic phase with the presence of several n-ZnWO4 nanocrystals on the surface of petals of flower-like p-BiOBr microcrystals. X-ray photoluminescence (XPS) analysis of BiOBr exhibits the existence of Bi, O, and Br, whereas BiOBr/ZnWO4-5%, in addition to Bi, O, and Br, consist of signature of Zn and W. UV�Visible spectra of p-BiOBr/n-ZnWO4-5% showed better absorption than p-BiOBr and n-ZnWO4, which displayed an enhanced collection of photons in the heterojunction. An intense photoluminescence emission at room temperature was observed for p-BiOBr microcrystals as compared to p-BiOBr/n-ZnWO4. We observed the best photocatalytic activity for p-BiOBr/n-ZnWO4-2.5% in the degradation of RhB dye at 99.4% in 25 min and CIP antibiotic at 58.2% in 170 min, which is assigned due to high surface area SBET (13 m2/g), pore size, providing active catalytic sites for bonding chemical and surface interaction and bonding chemical between the bromide/oxides. Finally, we have investigated the use of scavengers for isopropanol, benzoquinone, and sodium azide, which proves that the hydroxyl (�OH) and superoxide (O2?) radicals as the foremost reactive oxygen spicies (ROS) in photocatalytic degradation of RhB dye and antibiotic CIP. � 2022 Elsevier LtdItem Probing the optical and magnetic modality of multi core-shell Fe3O4@SiO2@?-NaGdF4:RE3+ (RE = Ce, Tb, Dy) nanoparticles(Elsevier B.V., 2023-02-22T00:00:00) Shrivastava, Navadeep; Ospina, Carlos; Jacinto, Carlos; de Menezes, Alan S.; Muraca, Diego; Javed, Yasir; Knobel, Marcelo; Luo, Zhiping; Sharma, Surender KumarA robust yellowish-green emitting multi core-shell Fe3O4@SiO2@?-NaGdF4:RE3+ (RE = 5% Ce, 5% Tb, x% Dy; x = 1, 5 and 10 mol.%) nanoparticles (NPs) containing both magnetic and luminescence modalities, are synthesized using simple, fast and efficient microwave-assisted hydrothermal method. The Rietveld analysis of X-ray diffraction and high-resolution transmission electron microscopy provides an average crystallite size of ?30 nm, confirming the successful coating of the ?-NaGdF4 hexagonal phase over Fe3O4. The detailed photoluminescence investigation suggests a down-converting energy transfer process, Ce3+?Gd3+?Tb3+? Dy3+ in which Gd3+ ions play a significant intermediate role assisted by Tb3+. The excitation spectra consist of dominant broadband at ?252 nm due to Ce3+ (4f�5d), two sharp lines at ? 271 nm, and ?311 due to Gd3+ (8S7/2?6IJ and 6PJ), and frail f?f transitions due to Tb3+ and Dy3+ ions. The excitation at ?252 nm fetches weak and sharp emission of Gd3+ ions at 310 nm, weak broad emission of Ce3+ (300�400 nm), and strong emission color lines of RE3+ (400�700 nm) due to characteristic transitions of Tb3+ (5D4?7FJ, J = 6�3), and Dy3+ (4F9/2�6H15/2, 6H13/2), respectively. The quenching phenomenon is observed due to concentration, and back transfer energy is proposed. The magnetic hysteresis loops display superparamagnetic behavior at 300 K and ferromagnetic ordering at 2 K with a remarkable difference in their magnetization values and confirming the blocking temperatures around physiological temperature ranges. The magneto-luminescence characteristics of the bifunctional system can be easily manipulated under an external magnetic field and suggest an efficient candidate for hybrid medical imaging such as MRI plus X-ray imaging and radiation detection. � 2023 Elsevier B.V.