Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jain, A. K. and Babu, J. Nagendra"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Calix[4]arene Derivative Capped Quantum Dots for Fluorogenic Sensing of Aromatic Analytes
    (Central University of Punjab, 2018) KUMAR, RABINDRA; Jain, A. K. and Babu, J. Nagendra
    Quantum dots (CdSe and CdS) were synthesized and capped with Calix[4]arene derivative (2-12). Method for green route of synthesis of CdS QD in [BMIM]Cl was established in our lab. Quantum dots (CdSe and CdS) were characterized by the TEM, DLS, UV-Vis, and Fluorescence. Calix[4]arene derivatives (1-12) were synthesized and characterized by FTIR and 1H NMR spectroscopy. Calix[4]arene derivatives adsorption on CdSe QD1-4 was characterized by fluorescence quenching and the binding characteristics were studied by applying Stern-Volmer plot to Langmuir adsorption. A non-covalent interaction between 2-12 and TOPO capped CdSe QD1-4 was observed. CdSe QD and Calix[4]arene derivative capped CdS QDs were evaluated for fluorescence sensing behavior towards sixteen polynuclear aromatic hydrocarbons (PAHs) and aromatic analytes, respectively. 2@QD2, 4@QD2, 7@QD2 and 9@QD2 showed selective and sensitive fluorescence enhancement in upto presence of fluorine (8 nM), acenaphthelene (30 nM), acenaphthene (135 nM) and benzo[b]fluorenthene (15 nM), respectively. However, 2@CdS QDs Showed selective and sensitive fluorescence enhancement in benzene. The limit of detection for benzene using 2@CdS QDs was found to be upto 30 nM. The proposed method was demonstrated for its use in determination of fluorene, acenaphthelene, acenaphthene and benzo[b]fluorenthene in spiked respirable dust (PM10) in ambient air samples collected during the open biomass (stubble) burning event in Bathinda, Punjab, ground water, milli Q water and canal water from CUP, Bathinda.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify