Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
  1. Home
  2. Browse by Author

Browsing by Author "Jain, R"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Structural, kinetic and thermodynamic characterizations of SDS-induced molten globule state of a highly negatively charged cytochrome c
    (Oxford University Press, 2019) Jain, R; Sharma, D; Kumar, Rakesh; Kumar, Rajesh
    This study presents the structural, kinetic and thermodynamic characterizations of previously unknown submicellar concentrations of SDS-induced molten globule (MGSDS) state of a highly negatively charged basedenatured ferricytochrome c (U B -state) at pH ∼12.8 (±0.2). The far-UV CD, near-UV CD, ANS-fluorescence data of UB-state in the presence of different concentrations of SDS indicate that the submicellar concentrations of SDS (≤0.4mM) transform the UBstate to MG SDS -state. The MG SDS -state has nativelike α-helical secondary structure but lacks tertiary structure. The free energy change (ΔG° D) for U B → MG SDS transition determined by far-UV CD (∼2.7 kcal mol -1 ) is slightly higher than those determined by fluorescence (∼2.0 kcal mol -1 ) at 25°C. At very low SDS and NaCl concentrations, the MG SDS -state undergoes cold denaturation. As SDS concentration is increased, the thermal denaturation temperature increases and the cold denaturation temperature decrease. Kinetic experiments involving the measurement of the CO-association rate to the base-denatured ferrocytochrome c at pH ≈12.8 (±0.2), 25°C indicate that the submicellar concentrations of SDS restrict the internal dynamics of base-denatured protein. © The Author(s) 2018. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement