Browsing by Author "Jakhar, M"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Adsorption of nucleobases on different allotropes of phosphorene(American Institute of Physics, 2019) Jakhar, M; Kumar, Ashok; Srivastava, S; Parida, P; Tankeshwar, K.There has been tremendous interest in low-dimensional quantum systems during past two decades, fueled by a constant stream of striking discoveries and also by the potential for, and realization of, new state-of-the-art electronic device architectures. In this paper, our work includes the structural, electronic and optical properties of nucleobase (Adenine(A), Cytosine(C), Guanine(G), Thymine(T)) adsorbed on different allotropes of phosphorene (α, β, γ). From the optical absorption spectra of different nucleobases when adsorbed on the surface of phosphorene, we could optically probe different Nucleobases. As phosphorene shows different spectra for different nucleobases, it behaves as a bio-sensor to detect various nucleobases. © 2019 Author(s).Item Pressure and electric field tuning of Schottky contacts in PdSe2/ZT-MoSe2 van der Waals heterostructure(Institute of Physics Publishing, 2020) Jakhar, M; Singh, J; Kumar, A; Tankeshwar, K.A two-dimensional van der Waals (vdW) heterostructure (PdSe2/ZT-MoSe2) has been investigated through vdW corrected density functional theory. ZT-MoSe2 acts as a Dirac material with an anisotropic Dirac cone and variable Fermi velocity (0.52-1.91 105 ms-1). The intrinsic Schottky barrier height can be effectively tuned by applying external pressure and an electric field to the heterostructure. The p-type Schottky barrier transforms into a p-type ohmic contact at pressure P ? 16 GPa. A positive electric field induces p-type ohmic contact while a negative electric field results in the transition from p-type Schottky contact to n-type Schottky contact, and finally to n-type ohmic contact at the higher values of the field. Moreover, the external positive (negative) electric field induces n-type (p-type) doping of ZT-MoSe2 in the heterostructure and remarkably controls the charge carrier concentration. Our results demonstrate that controlling the external pressure and electric field in a PdSe2/ZT-MoSe2 heterostructure can result in an unprecedented opportunity for the design of high-performance nanodevices. � 2020 IOP Publishing Ltd.Item Stability and electronic properties of two dimensional pentagonal layers of palladium chalcogenides(American Institute of Physics, 2019) Kumar, Ashok; Jakhar, M; Srivastava, S; Tankeshwar, K.We report structural and electronic properties of pristine and hybrid monolayers/bilayers of Pd chlcogenides within state-of-the-art density functional theory (DFT) calculations. The calculated cohesive energy suggests hybrid systems to be more stable than pristine monolayer/bilayer system. The considered structures show indirect band gap which get reduced on going from monolayer to bilayers. Spin-orbit coupling (SOC) further reduce the bandgap by shifting the band edges towards Fermi level. The reduction in band gap of hybrid bilayers is more pronounced which is attributed to the electronegativity difference between chalcogen S/Se atoms and greater charge redistribution between the layers. We believe that our theoretical study will add more 2D materials in the fascinating class of new 2D family and may guide the experimentalists to realize them for various future nano-electronic applications. © 2019 Author(s).Item Stability, electronic and mechanical properties of chalcogen (Se and Te) monolayers(Royal Society of Chemistry, 2020) Singh, J; Jamdagni, P; Jakhar, M; Kumar, A.The successful experimental fabrication of 2D tellurium (Te) has resulted in growing interest in the monolayers of group VI elements. By employing density functional theory, we have explored the stability and electronic and mechanical properties of 1T-MoS2-like chalcogen (?-Se and ?-Te) monolayers. Phonon spectra are free from imaginary modes suggesting these monolayers to be dynamically stable. The stability of these monolayers is further confirmed by room temperature AIMD simulations. Both ?-Se and ?-Te are indirect gap semiconductors with a band gap (calculated using the hybrid HSE06 functional) of 1.16 eV and 1.11 eV, respectively, and these gaps are further tunable with mechanical strains. Both monolayers possess strong absorption spectra in the visible region. The ideal strengths of these monolayers are comparable with those of many existing 2D materials. Significantly, these monolayers possess ultrahigh carrier mobilities of the order of 103 cm2 V-1 s-1. Combining the semiconducting nature, visible light absorption and superior carrier mobilities, these monolayers can be promising candidates for the superior performance of next-generation nanoscale devices. This journal is � the Owner Societies.