Browsing by Author "Jakhar, Mukesh"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Engineering 2D Materials for Photocatalytic Water-Splitting from a Theoretical Perspective(MDPI, 2022-03-21T00:00:00) Jakhar, Mukesh; Kumar, Ashok; Ahluwalia, Pradeep K.; Tankeshwar, Kumar; Pandey, RavindraSplitting of water with the help of photocatalysts has gained a strong interest in the scientific community for producing clean energy, thus requiring novel semiconductor materials to achieve highyield hydrogen production. The emergence of 2D nanoscale materials with remarkable electronic and optical properties has received much attention in this field. Owing to the recent developments in highend computation and advanced electronic structure theories, first principles studies offer powerful tools to screen photocatalytic systems reliably and efficiently. This review is organized to highlight the essential properties of 2D photocatalysts and the recent advances in the theoretical engineering of 2D materials for the improvement in photocatalytic overall water-splitting. The advancement in the strategies including (i) single-atom catalysts, (ii) defect engineering, (iii) strain engineering, (iv) Janus structures, (v) type-II heterostructures (vi) Z-scheme heterostructures (vii) multilayer configurations (viii) edge-modification in nanoribbons and (ix) the effect of pH in overall watersplitting are summarized to improve the existing problems for a photocatalytic catalytic reaction such as overcoming large overpotential to trigger the water-splitting reactions without using cocatalysts. This review could serve as a bridge between theoretical and experimental research on next-generation 2D photocatalysts. � 2022 by the authors. Licensee MDPI, Basel, Switzerland.Item Janus ?-PdXY (X/Y = S, Se, Te) materials with high anisotropic thermoelectric performance(Royal Society of Chemistry, 2023-02-21T00:00:00) Jakhar, Mukesh; Sharma, Raman; Kumar, AshokTwo-dimensional (2D) materials have garnered considerable attention as emerging thermoelectric (TE) materials owing to their unique density of states (DOS) near the Fermi level. We investigate the TE performance of Janus ?-PdXY (X/Y = S, Se, Te) monolayer materials as a function of carrier concentration and temperature in the mid-range from 300 to 800 K by combining density functional theory (DFT) and semi-classical Boltzmann transport theory. The phonon dispersion spectra and AIMD simulations confirm their thermal and dynamic stability. The transport calculation results reveal the highly anisotropic TE performance of both n and p-type Janus ?-PdXY monolayers. Meanwhile, the coexistence of low phonon group velocity and a converged scattering rate leads to a lower lattice thermal conductivity (Kl) of 0.80 W mK?1, 0.94 W mK?1, and 0.77 W mK?1 along the y-direction for these Janus materials, while the high TE power factor is attributed to the high Seebeck coefficient (S) and electrical conductivity, which are due to the degenerate top valence bands of these Janus monolayers. The combination of lower Kl and a high-power factor at 300 K (800 K) leads to an optimal figure of merit (ZT) of 0.68 (2.21), 0.86 (4.09) and 0.68 (3.63) for p-type Janus PdSSe, PdSeTe and PdSTe monolayers, respectively. To evaluate rational electron transport properties, the effects of acoustic phonon scattering (?ac), impurity scattering (?imp), and polarized phonon scattering (?polar) are included in the temperature-dependent electron relaxation time. These findings indicated that the Janus ?-PdXY monolayers are promising candidates for TE conversion devices. � 2023 The Royal Society of Chemistry.Item Stability, optoelectronic and thermal properties of two-dimensional Janus ?-Te2S(IOP Publishing Ltd, 2022-02-14T00:00:00) Singh, Jaspreet; Jakhar, Mukesh; Kumar, AshokMotivated by recent progress in the two-dimensional (2D) materials of group VI elements and their experimental fabrication, we have investigated the stability, optoelectronic and thermal properties of Janus ?-Te2S monolayer using first-principles calculations. The phonon dispersion and MD simulations confirm its dynamical and thermal stability. The moderate band gap ( 1/41.5 eV), ultrahigh carrier mobility ( 1/4103 cm2 V-1 s-1), small exciton binding energy (0.26 eV), broad optical absorption range and charge carrier separation ability due to potential difference ( "V = 1.07 eV) on two surfaces of Janus ?-Te2S monolayer makes it a promising candidate for solar energy conversion. We propose various type-II heterostructures consisting of Janus ?-Te2S and other transition metal dichalcogenides for solar cell applications. The calculated power conversion efficiencies of the proposed heterostructures, i.e. ?-Te2S/T-PdS2, ?-Te2S/BP and ?-Te2S/H-MoS2 are 1/421%, 1/419% and 18%, respectively. Also, the ultralow value of lattice thermal conductivity (1.16 W m-1 K-1) of Janus ?-Te2S makes it a promising material for the fabrication of next-generation thermal energy conversion devices. � 2022 IOP Publishing Ltd.Item Tunable photocatalytic water splitting and solar-to-hydrogen efficiency in ?-PdSe2monolayer(Royal Society of Chemistry, 2021-08-18T00:00:00) Jakhar, Mukesh; Kumar, AshokDirect production of hydrogen from photocatalytic water splitting is a potential solution to overcome global energy crisis. Herein, based on first-principles calculations, we demonstrate that the two-dimensional ?-PdSe2 monolayer is a promising candidate for efficient photocatalytic water splitting in acidic and alkaline media as well as neutral medium with highly efficient solar-to-hydrogen efficiency. ?-PdSe2 monolayer shows low cleavage energy which endorses the possibility of its mechanical exfoliation from layered bulk ?-PdSe2. Remarkably, ?-PdSe2 monolayer is semiconducting with indirect band gap of 1.96 eV with perfect engulfing the redox potential of water in a wide range of pH of medium. ?-PdSe2 monolayer exhibits good light harvesting ability and adequate driving forces for water redox reaction in wide range of pH (0 to 12). Comprehensive investigation of pH dependent water splitting indicates that the ?-PdSe2 monolayer is a better candidate for efficient water splitting in alkaline media rather than acidic or neutral medium. In addition, high solar-to-hydrogen efficiency as high as ?17% is obtained that shows ?-PdSe2 monolayer a promising candidate for overall photocatalytic water-splitting. � The Royal Society of Chemistry.Item Two-dimensional ?-PdX2 (X = S, Te) monolayers for efficient solar energy conversion applications(Royal Society of Chemistry, 2022-02-09T00:00:00) Jakhar, Mukesh; Kumar, AshokThe search for highly effective and environmentally safe photocatalysts for water splitting and photovoltaic solar cells is essential for renewable solar energy conversion and storage. Based on first-principle calculations, we show that novel 2D ?-PdX2 (X = S, Te) monolayer possesses excellent stability and great potential in solar energy conversion applications. Comprehensive studies show that the ?-PdS2 monolayer exhibits semiconductor characteristics with an indirect gap, suitable band alignment, efficient carrier separation, and high solar to hydrogen (STH) efficiency, supporting its good photoelectronic performance. The surface catalytic and adsorption/intercalation energy calculation reveals that the photogenerated electrons have adequate driving forces to render hydrogen reduction half-reactions to proceed spontaneously and the ability to cover and incorporate water molecules on the ?-PdS2 monolayer. Besides, the ?-PdTe2 monolayer is a promising donor material for excitonic solar cells with high photovoltaic performance. More importantly, due to suitable donor band gap and small conduction band offset in the proposed type-II heterostructure, the power conversion efficiencies (PCE) were calculated up to ?23% (?-PdTe2/WTe2), ?21% (?-PdTe2/MoTe2) and ?18% (?-PdTe2/?-PdS2), making it a promising candidate for solar energy conversion applications. � 2022 The Royal Society of Chemistry