Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "K.N, Yogalakshmi"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Lignocellulosic Biorefinery Technologies: A Perception into Recent Advances in Biomass Fractionation, Biorefineries, Economic Hurdles and Market Outlook
    (MDPI, 2023-03-01T00:00:00) K.N, Yogalakshmi; T.M, Mohamed Usman; Kavitha, S.; Sachdeva, Saloni; Thakur, Shivani; Adish Kumar, S.; J, Rajesh Banu
    Lignocellulosic biomasses (LCB) are sustainable and abundantly available feedstocks for the production of biofuel and biochemicals via suitable bioconversion processing. The main aim of this review is to focus on strategies needed for the progression of viable lignocellulosic biomass-based biorefineries (integrated approaches) to generate biofuels and biochemicals. Processing biomass in a sustainable manner is a major challenge that demands the accomplishment of basic requirements relating to cost effectiveness and environmental sustainability. The challenges associated with biomass availability and the bioconversion process have been explained in detail in this review. Limitations associated with biomass structural composition can obstruct the feasibility of biofuel production, especially in mono-process approaches. In such cases, biorefinery approaches and integrated systems certainly lead to improved biofuel conversion. This review paper provides a summary of mono and integrated approaches, their limitations and advantages in LCB bioconversion to biofuel and biochemicals. � 2023 by the authors.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify