Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kanwar, Komal"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Structural, Electrical and Electrochemical Properties of Fe Doped Orthosilicate Cathode Materials
    (Springer Nature, 2021-12-02T00:00:00) Singh, Nirbhay; Kanwar, Komal; Tanwar, Shweta; Sharma, A.L.; Yadav, B.C.
    We report the paper related to the effect of Fe doping on the Li2FexMn1?xSiO4 (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) cathode materials synthesized by Sol-Gel technique. X-Ray Diffraction evidences the monoclinic structure with space group Pn(7) and crystal size decreases from 43 to 35�nm on doping Fe in Li2MnSiO4. Field emission scanning electron microscopy (FESEM) confirms that particle size reduces from 60 to 21�nm with increase of Fe concentration. The impedance analysis shows that highest electrical conductivity was 4.5 � 10�5 Scm?1 for Li2Fe0.4Mn0.6SiO4 cathode material. The initial specific capacity was 152 mAhg?1 at the rate of 0.1 C and 131 mAhg?1 after the 50th cycle with 86% capacity retention. The doping of Fe enhanced the conductivity by reducing its charge transfer resistance and increasing Li-ion diffusion coefficient than the pure Li2MnSiO4 cathode material. � 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify