Browsing by Author "Kataria, Navish"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item Advanced membrane technology for the removal of pesticides from water and wastewater(Elsevier, 2022-05-21T00:00:00) Yadav, Sangita; Chauhan, Amit Kumar; Kumar, Sandeep; Kataria, NavishAgricultural runoff is one of the main factors that introduces pesticide residue into water. Common pesticides such as DEET(N,N-diethyl-meta-toluamide), DDT(dichloro diphenyl trichloroethane), metolachlor, malathion, etc., have continuously contaminated water systems. These pesticides are toxic and can cause detrimental effects on living organisms, even at trace amounts. Most pesticides are grouped into chemical families and persist the environment for long periods. Therefore, specific water treatment is required to clean the waterbodies contaminated with pesticides. Several conventional treatment methods have been introduced in the past to decontaminate the waterbodies. However, there are many advantages and disadvantages associated with these processes. Nowadays, membrane technology is one of the best and preferred method available to treat contaminated water because of its high efficiency, cost effectiveness, easy applicability, stability, and low footprint. Membrane filtration includes reverse osmosis, nanofiltration, ultrafiltration, nanofiber filtration, and biomembrane filtration processes for pollution separation. Membrane materials and filtration processes can be modified depending on the chemical structure and properties of the pesticides. Recent advances in nanotechnology offer energy-efficient, low cost, and eco-friendly approaches in water treatment technologies. Membrane materials can be modified to obtain better results and increase its effectiveness for treatment process. Recently, researchers have started working to introduce new nanomaterials including carbon nanotubes, nanopolymers, metal-organic nanomembrane, graphene, quantum and nanoshells development of membrane filters for water purification. Recently, membrane materials progress has allowed filtration to become more effective over other conventional treatment methods and popularized globally. � 2022 Elsevier Inc. All rights reserved.Item Biogenic fabrication of ZnO@EC and MgO@EC using Eucalyptus leaf extract for the removal of hexavalent chromium Cr(VI) ions from water(Springer Science and Business Media Deutschland GmbH, 2023-01-04T00:00:00) Chauhan, Amit Kumar; Kataria, Navish; Gupta, Renuka; Garg, Vinod KumarZinc and magnesium oxide nanoparticles were fabricated using green synthesis method for the sequestration of hexavalent chromium Cr(VI) from the aqueous medium. The biogenically prepared ZnO@EC and MgO@EC nanoparticles were successfully loaded on the Eucalyptus. The prepared nanomaterials were characterized using various techniques such as FESEM, TGA, XRD, EDX, FTIR, BET, and elemental mapping. FE-SEM analysis has revealed the surface morphology of ZnO nanoparticles, which were rod-like and spherical in shape, whereas MgO nanoparticles were of irregular shape. Batch mode was selected to remove the hexavalent chromium from aqueous solution using the prepared nanomaterials. The Cr(VI) adsorption was carried out under optimized conditions, viz., pH (3.0), adsorbent dose (0.05�g), contact time (150�min), temperature (25 � 2��C), and initial concentration (50�mg/L). The experimental results were compared using the different isotherm models; The observations have indicated that experimental data fit better with Freundlich (R2 = 0.99) and Langmuir (R2 = 0.99)�isotherms, respectively. The maximum adsorption capacity of ZnO@EC and MgO@EC for Cr(VI) was found to be 49.3 and 17.4�mg/g, respectively. The regeneration study of the adsorbents was conducted using different desorbing agents viz., ethanol, NaOH, and NaCl. The desorbing agent NaOH performed better and showed removal percentage of 34.24% and 20.18% for ZnO@EC and MgO@EC, respectively, after the three reusability cycles. The kinetics of reaction was assessed using the pseudo-first-order and pseudo-second-order kinetic models. The experimental data of both the nanomaterials ZnO@EC and MgO@EC obeyed pseudo-second-order model with correlation coefficient values 0.999 and 0.983, respectively. The thermodynamic study confirmed that adsorption was feasible, spontaneous, and endothermic. The adsorbents were tested for spiked real water which confirms their applicability and potential in real water systems also. The results indicated fair removal of chromium suggesting applicability of both adsorbents. � 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Item Chemical and physical properties of nanoparticles and hybrid materials(Elsevier, 2022-01-21T00:00:00) Gupta, Renuka; Chauhan, Heena; Garg, Vinod Kumar; Kataria, NavishNanotechnology is one among the fastest emerging fields of science and engineering in which nanostructures are designed, engineered, and fabricated by manipulation of matter in the range from 1 to 100 nm. Scientists and researchers are continuously working on designing and development of micro/nano-sized materials that include nanocomposites, hybrid materials, metal-organic frameworks, doped metal oxides, nanocarbon, functionalized and surface modified nanomaterials, etc. Nanomaterials are synthesized from bulk materials that efficiently enhance and upgrade the chemical and physical properties. The chemical properties of nanomaterials depend on the composition of particles that set the potential of matter to undergo chemical reactions. These mainly include heat of combustion, oxidation, partition coefficient, molecular weight, boiling point, melting point, solubility, stability, flammability, zeta potential, corrosion, reactivity, chemical composition, radioactivity, etc. However, physical properties of nanomaterials depend on the arrangement and state of the particles and are demonstrated by particle size distribution, shape, density, viscosity, crystalline structure, odor, surface area, etc. Due to these properties nanomaterials are the potential candidates for various commercial and domestic applications such as photocatalysis, imaging, redox reaction, agricultural practices, medical diagnosis and therapy, energy-based research, biotechnology, and environmental pollution detection and management. Various techniques used to characterize the physical and chemical properties of nanostructures include scanning electron microscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), etc. This chapter deals with the physical and chemical properties of nanomaterials with a review on their synthesis and analysis method. Applications of nanomaterials in diverse areas have also been discussed in this chapter. � 2022 Elsevier Inc. All rights reserved.Item Hybrid nanomaterials for the removal of organic pollutants from wastewater(Elsevier, 2023-04-21T00:00:00) Sharma, Anchal; Chauhan, Amit Kumar; Kataria, Navish; Garg, Vinod KumarNanomaterials have recently gained the attention of the scientific community due to their multifarious applications and excellent properties. The unique properties of nanomaterials include small size, high surface area-to-volume ratio, porous structure, magnetic behavior, thermal stability, photocatalysis, etc. Industrial activities are continuously enhancing the pollutant load in different environmental matrices, including aqueous systems. These pollutants may enter the food chain and exert adverse health effects and environmental problems. At this stage, interventions are urgently required to handle water pollutants. Several hybrid nanomaterials including metal oxide/carbon nanocomposites, metal doped composites, surface-functionalized carbon nanotubes and graphene oxide, metal oxide-coated metal oxide frameworks, bimetallic coated biopolymers, metal-coated biomaterials, green fabricated metal/carbon nanocomposites, etc., are being designed and fabricated for the treatment of wastewater. Hybrid nanomaterials have been utilized in various treatment methods such as adsorption, photocatalysis and catalytic reduction, membrane filtration, and an advanced oxidation process for the removal of inorganic and organic compounds. This chapter focuses on the application of hybrid nanomaterials for the removal of organic pollutants from wastewater systems. It also describes the current research progress of nanotechnology in environmental applications with a special emphasis on pollution prevention and the removal of environmental contaminants from contaminated drinking water and industrial wastewater. � 2023 Elsevier Inc. All rights reserved.Item Microplastics in multimedia environment: A systematic review on its fate, transport, quantification, health risk, and remedial measures(Elsevier B.V., 2023-01-06T00:00:00) Rose, Pawan Kumar; Jain, Monika; Kataria, Navish; Sahoo, Prafulla Kumar; Garg, Vinod Kumar; Yadav, AnoopThe ever-increasing presence of microplastics in many environmental components has been a cause of worry for humanity due to their small size and potential health risk. Since the last decade, numerous studies have been conducted on the prevalence and dispersion of microplastics. However, at present, there aren't any systematic studies on fate and transport of microplastics that consider multimedia environmental systems and their mitigation measures. Also, there are limited studies on the routes through which humans are exposed to microplastics. In this review, about 380 articles were evaluated to uncover the extent of microplastic fate, transport, and pollution in different environmental components, including soil, freshwater, marine, and atmosphere, as well as its effect on different ecosystems. We gave special attention to understanding many routes and sources of microplastics intended for human consumption and their consequences on human health. Furthermore, we tried to emphasize on the different methods used for sampling, extraction, identification and characterization of microplastics, along with associated benefits and limitations. This study highlighted existing knowledge and gaps in the remediation of microplastics. On this basis, the bottleneck and current challenges have been proposed. � 2023 Elsevier B.V.Item Pharmaceutical Contamination in Water and Wastewater: Remediation Technology and Future Challenges(CRC Press, 2023-09-12T00:00:00) Kataria, Navish; Yadav, Sangita; Rose, Pawan Kumar; Garg, Vinod KumarWater is an essential natural resource available on the earth for the use of human beings. Numerous new toxins build up in aquatic habitats due to industrial, agricultural, hospital, and residential discharges. Nowadays, several nations consider pharmaceutical pollution of the aquatic environment a severe environmental issue. Therefore, research focusing on the chemical identification and measurement of these substances, assessing potential biological impacts, and developing and applying state-of-the-art treatment techniques for their removal and/or mineralisation has gained tremendous attention. Conventional treatment techniques generally result in inadequate removal, toxic by-products, and sludge production and are usually ineffective in eliminating new contaminants, such as pharmaceuticals. Additionally, the concentration of these contaminants has not been routinely evaluated since there are no precise discharge regulations. Advanced water treatment techniques are needed to treat pharmaceutical waste effectively. The present chapter discusses the potential methods for remediating pharmaceuticals from water bodies and wastewater streams, as well as advancements in remediation strategies, green chemistry, circular economy, and associated future challenges. � 2024 selection and editorial matter, Vinod Kumar Garg, Ashok Pandey, Navish Kataria and Caterina Faggio; individual chapters, the contributors.Item Pharmaceuticals in Aquatic Environments: Remediation Technologies and Future Challenges(CRC Press, 2023-09-12T00:00:00) Garg, Vinod Kumar; Pandey, Ashok; Kataria, Navish; Faggio, CaterinaThis book covers pharmaceutical residue dispersion in the aquatic environment and its toxic effect on living organisms. It discusses conventional and advanced remediation technologies such as the use of biomaterials for the sequestration of contaminants, nanotechnology, and phytoremediation. The book includes topics such as the removal of pharmaceutical and personal care product residues from water bodies, green chemistry, and legal regimens for pharmaceuticals in the aquatic environment. It also covers the application of modified biochar in pharmaceutical removal. FEATURES � Explores the management of the environment through green chemistry � Describes phytoremediation technology for decontamination of pharmaceutical-laden water and wastewater � Covers the detection methods and quantification of pharmaceutical residues in various contaminated sources � Discusses ecotoxicological aspects and risk assessment of pharmaceuticals in the aquatic environment � Reviews degradation and treatment technologies including nanotechnology, biomaterials, and biochar This book is meant for pharmaceutical, toxicology, and environmental science industry experts and researchers. � 2024 selection and editorial matter, Vinod Kumar Garg, Ashok Pandey, Navish Kataria and Caterina Faggio; individual chapters, the contributors.Item Pharmaceuticals in Aquatic Environments: Toxicity, Monitoring, and Remediation Technologies(CRC Press, 2023-06-29T00:00:00) Garg, Vinod Kumar; Pandey, Ashok; Kataria, Navish; Faggio, CaterinaThis reference book compiles up-to-date research about the threat and management of pharmaceutical residue dispersion in the aquatic environment. It explores the risk analysis and short- and long-term health issues created due to the ingestion of pharmaceutical-contaminated food products and drinking water. The book focuses on the methods of removal and degradation processes of pharmaceutical residues from contaminated sources. It emphasizes the importance of eco-friendly and advanced treatment technology for the sustainable management of wastewater and drinking water supply. The book is meant for industry experts and researchers in pharmaceutical science, toxicology, and environmental sciences. � 2024 selection and editorial matter, Vinod Kumar Garg, Ashok Pandey, Navish Kataria, and Caterina Faggio; individual chapters, the contributors.Item Pharmaceuticals in the Aquatic Environment Introduction(CRC Press, 2023-06-29T00:00:00) Dhillayan, Divya; Sabherwal, Himani; Kataria, Navish; Garg, Vinod KumarPharmaceuticals have unquestionably contributed to the health sector, well-being, and quality of life. These have made a mark in the advancement of human science. In recent years, pharmaceutical production, transportation, and usage have expanded enormously. But often pharmaceuticals are considered as emerging contaminants that require immediate intervention as there could be adverse impacts on humans and as well as non-human flora and fauna. This chapter summarises various sources, occurrences, pathways, and toxicity on humans, animals, and plant life. Different analytic techniques which are used for their detection have also been discussed in this chapter. � 2024 selection and editorial matter, Vinod Kumar Garg, Ashok Pandey, Navish Kataria, and Caterina Faggio; individual chapters, the contributors.Item Recent Advancement in Nanotechnology for the Treatment of Pharmaceutical Wastewater: Sources, Toxicity, and Remediation Technology(Springer Science and Business Media Deutschland GmbH, 2023-03-11T00:00:00) Kumar, Sandeep; Yadav, Sangita; Kataria, Navish; Chauhan, Amit Kumar; Joshi, Seema; Gupta, Renuka; Kumar, Parmod; Chong, Jun Wei Roy; Khoo, Kuan Shiong; Show, Pau LokeThe textile, paper and pulp, distillery, and pharmaceutical industries are only a few of the many sectors that contribute significantly to the contamination of water bodies and their unsuitability for human use. Pharmaceuticals, which are credited with saving millions of lives in recent decades, have emerged as a new category of environmental hazard. Their prolonged presence in the environment has a number of negative effects, including gene toxicity, hormone interference, antibiotic resistance, the imposition of sex organs, and many others. To ensure that everyone in the world can access to uncontaminated and safe drinking water, it is important to treat pharmaceutical laden wastewater before discharge in fresh water body. Nanotechnology is getting significant attention due to enormous properties such as the high surface area to volume ratio, new optical properties, and desired shape. Nanomaterials might be a strong option for purifying water of a variety of environmental pollutants. This review also touches on several environmental aspects of pharmaceuticals, including (i) the current status of pharmaceuticals production and their use pattern, (ii) sources, occurrence, and transport behaviour of pharmaceuticals, (iii) analysis techniques and potential toxicity of pharmaceuticals and (iv) various conventional and advanced nanotechnology for water remediation. The present review is predominately designed to highlight the progress and major update in advantaged nanotechnology for remediation of pharmaceutical contaminated wastewater. The literature study (2015�2022) critically illustrated the recent pharmaceutical contaminations concerns and remediation efforts emphasizing nanotechnology like nanoadsorption, AOPs, nano-catalyst, electrochemical degradation and nanomembrane/nanofiltration technology. � 2023, The Author(s), under exclusive licence to Springer Nature Switzerland AG.Item Sequestration of heavy metals from contaminated water using magnetic carbon nanocomposites(Elsevier B.V., 2022-03-30T00:00:00) Kataria, Navish; Chauhan, Amit Kumar; Garg, V.K.; Kumar, ParmodHeavy metals are toxic to flora, fauna and human beings. This study focused on removing toxic metals from an aqueous medium using magnetic carbon (Fe3O4@Carbon) nanocomposites. The biogenic green synthesis approach was used to fabricate the magnetic nanocomposite using low-cost poplar sawdust powder. The characterization of the nanocomposites was done using FESEM, TEM BET and FTIR. The sequestration of Pb (II), Cu (II) and Cr (VI) from water by Fe3O4@Carbon nanocomposites were studied under batch mode. The adsorption capacities for Pb (II), Cu (II) and Cr (VI) were 151.5, 48.08, and leaves49.29 mg/g respectively. The removal of metals by magnetic composites was studied in a mono, binary and tertiary network of metal ions. Adsorption isotherms studies indicated the chemosorption of Cu (II) and Cr (VI) onto the surface of nanocomposites. The thermodynamic analysis revealed that removal of studied metals ions is spontaneous and feasible. In this study, the effectiveness of magnetic nanocomposites is also explored for the removal of other heavy metals from tap water and simulated water sample. The heavy metal removal efficiency of the nanocomposites was not affected up to thrice reuse of adsorbent. � 2022