Browsing by Author "Kumar, Ravindra"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Interferon inducible guanylate binding protein 1 restricts the growth of Leishmania donovani by modulating the level of cytokines/chemokines and MAP kinases(Academic Press, 2022-05-09T00:00:00) Kumar, Ravindra; Kushawaha, Pramod KumarVisceral Leishmaniasis (VL) is a zoonotic chronic endemic infectious disease caused by Leishmania donovani infection and a well-studied model for intracellular parasitism. Guanylate binding proteins (GBPs) are induced by interferons (IFNs), and play a crucial role in cell autonomous immunity and the regulation of inflammation. Guanylate-binding protein 1 (GBP1) has been shown vital for the host immune response against various pathogens. However, the role of GBP1 during VL is undefined. In the present study, we have investigated the role of GBP1 in Leishmania donovani infection using in vitro model. For that, knock down of the Gbp1 gene was carried out in both PMA differentiated human monocyte cell line THP-1 and mouse macrophages RAW264.7 cell line using siRNA based RNA interference. Infection of these cell lines revealed a high parasite load in knock down cells at 24 and 48h post infection as compared to control cells. A significant increase was observed in the level of different cytokines (IL-4, IL-10, IL-12b, IFN-?, TNF-?) and chemokines (CXCL9, CXCL 10, and CXCL 11) in GBP1 knock down cell lines after post-infection. In GBP1 knock down cells the expression level of IFN effector molecules (iNOS and PKR) was found to be elevated in THP1 cells and remained almost unchanged in RAW264.7 cells after Leishmania donovani infection as compared to the control cells. Moreover, interestingly, the level of MAPK activated ERK1/2, and p38 MAPK were considerably induced by the parasite in knock down cells as compared to control after 24 h post-infection. This study, first time reported the involvement of GBP1 in Leishmania donovani infection by modulating the level of important cytokines, chemokines, IFN effector molecules, and MAP kinases. � 2022 Elsevier LtdItem Interferon inducible guanylate binding protein 1 restricts the growth of Leishmania donovani by modulating the level of cytokines/chemokines and MAP kinases(Academic Press, 2022-05-09T00:00:00) Kumar, Ravindra; Kushawaha, Pramod KumarVisceral Leishmaniasis (VL) is a zoonotic chronic endemic infectious disease caused by Leishmania donovani infection and a well-studied model for intracellular parasitism. Guanylate binding proteins (GBPs) are induced by interferons (IFNs), and play a crucial role in cell autonomous immunity and the regulation of inflammation. Guanylate-binding protein 1 (GBP1) has been shown vital for the host immune response against various pathogens. However, the role of GBP1 during VL is undefined. In the present study, we have investigated the role of GBP1 in Leishmania donovani infection using in vitro model. For that, knock down of the Gbp1 gene was carried out in both PMA differentiated human monocyte cell line THP-1 and mouse macrophages RAW264.7 cell line using siRNA based RNA interference. Infection of these cell lines revealed a high parasite load in knock down cells at 24 and 48h post infection as compared to control cells. A significant increase was observed in the level of different cytokines (IL-4, IL-10, IL-12b, IFN-?, TNF-?) and chemokines (CXCL9, CXCL 10, and CXCL 11) in GBP1 knock down cell lines after post-infection. In GBP1 knock down cells the expression level of IFN effector molecules (iNOS and PKR) was found to be elevated in THP1 cells and remained almost unchanged in RAW264.7 cells after Leishmania donovani infection as compared to the control cells. Moreover, interestingly, the level of MAPK activated ERK1/2, and p38 MAPK were considerably induced by the parasite in knock down cells as compared to control after 24 h post-infection. This study, first time reported the involvement of GBP1 in Leishmania donovani infection by modulating the level of important cytokines, chemokines, IFN effector molecules, and MAP kinases. � 2022 Elsevier LtdItem Transferrin decorated PLGA encumbered moxifloxacin nanoparticles and in�vitro cellular studies(Taylor and Francis Ltd., 2023-03-05T00:00:00) Reddy, Gayathri Aparnasai; Handa, Mayank; Garabadu, Debapriya; Kumar, Ravindra; Kushawaha, Pramod Kumar; Shukla, RahulPurpose: Complicated intra-abdominal infection (cIAI) management involves administering antibiotics that destroy the cell wall and the genesis of bacterial lipopolysaccharide (LPS). During the infectious state, the expression of transferrin receptors upregulates on the intestinal epithelial cells, which are considered the site of infection. In the present research, transferrin decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) encapsulated moxifloxacin (MOX) were developed for possible targeting of the receptors in the colon. Significance: This study will explore more about the incorporation of transferrin as effective coating material in targeted drug delivery. Methods: Nanoparticles were prepared using nano-emulsification and surface modification with transferrin was done by layer-by-layer methodology and evaluated by powder X-ray diffraction (PXRD), differential scanning calorimeter (DSC), FTIR, SEM, antibacterial activity, and cellular uptake studies. Results: The formulated NPs exhibit a size of ?170 nm, PDI�?�0.25, zeta potential�??4.0 mV, drug loading�?�6.8%, and entrapment efficiency of 82%. Transferrin-decorated NPs exhibit tailored release for almost 12 h and in�vitro antibacterial activity for 14 h. The cellular uptake studies were done on a RAW264.7 cell line for better determination of transferrin uptake of fabricated NPs. Conclusion: The above study circumvents around the preparation of transferrin decorated PLGA encumbered MOX NPs intended for cIAI-induced sepsis. PLGA NPs provide tailored release of MOX with primary burst and followed by sustained release. These observations confines with antibacterial activity studies. The prepared transferrin-coated NPs were stable and effectively uptaken by RAW264.7 cells. However, future studies include the preclinical investigation of these NPs in sepsis-induced murine models. � 2023 Informa UK Limited, trading as Taylor & Francis Group.