Browsing by Author "Kushwaha, Prem Prakash"
Now showing 1 - 20 of 24
- Results Per Page
- Sort Options
Item Ancistrobrevinium A, the first N-methylated, cationic naphthylisoquinoline alkaloid, from the tropical liana Ancistrocladus abbreviatus (Ancistrocladaceae)(Taylor and Francis Ltd., 2023-03-29T00:00:00) Tajuddeen, Nasir; Fayez, Shaimaa; Kushwaha, Prem Prakash; Feineis, Doris; Ak� Assi, Laurent; Kumar, Shashank; Bringmann, GerhardAncistrobrevinium A (1) is the first N-methylated and non-hydrogenated, and thus cationic naphthylisoquinoline alkaloid. It was discovered in the root bark extract of the phytochemically productive West African liana Ancistrocladus abbreviatus (Ancistrocladaceae). Its constitution was elucidated by HR-ESI-MS and 1D and 2D NMR. Due to the steric hindrance in the proximity of the linkage between the naphthalene and isoquinoline parts, the biaryl axis is rotationally hindered. It thus constitutes a stable element of chirality�the only one in the new alkaloid since, different from most other naphthylisoquinoline alkaloids, it has no stereogenic centers. The axial configuration of 1 was assigned by electronic circular dichroism (ECD) investigations, which gave a positive couplet, indicating a �positive chirality�, here corresponding to a P-configuration. Ancistrobrevinium A (1) showed a weak cytotoxic activity against A549 lung cancer cells (IC50 = 50.6 ?M). � 2023 Informa UK Limited, trading as Taylor & Francis Group.Item Anti-proliferative, apoptosis inducing, and antioxidant potential of Callistemon lanceolatus bark extracts: an in vitro and in silico study(Springer, 2023-05-08T00:00:00) Kumar, Ramesh; Kushwaha, Prem Prakash; Singh, Atul Kumar; Kumar, Shashank; Pandey, Abhay KumarThe present study reports anticancer and antioxidant activities of Callistemon lanceolatus bark extracts. Anticancer activity was studied against MDA-MB-231 cells. Antioxidant assessment of the chloroform and methanol extracts showed considerable free radical scavenging, metal ion chelating, and reducing power potential. Chloroform extract exhibited potent inhibition of cancer cell proliferation in MTT assay (IC50 9.6�?g/ml) and promoted programmed cell death. Reactive oxygen species (ROS) generation, mitochondria membrane potential (MMP) disruption ability, and nuclear morphology changes were studied using H2-DCFDA, JC-1, and Hoechst dyes, respectively, using confocal microscopy. Apoptotic cells exhibited fragmented nuclei, increased ROS generation, and altered MMP in dose- and time-dependent manner. Chloroform extract upregulated the BAX-1 and CASP3 mRNA expression coupled with downregulation of BCL-2 gene. Further, in silico docking of phytochemicals present in C. lanceolatus with anti-apoptotic Bcl-2 protein endorsed apoptosis by its inhibition and thus corroborated the experimental findings. Obatoclax, a known inhibitor of Bcl-2 was used as a reference compounds. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Bulbine frutescens phytochemicals as novel ABC-transporter inhibitor: A molecular docking and molecular dynamics simulation study(OAE Publishing Inc., 2021-01-08T00:00:00) Kushwaha, Prem Prakash; Maurya, Santosh Kumar; Singh, Amit; Prajapati, Kumari Sunita; Singh, Atul Kumar; Shuaib, Mohd; Kumar, ShashankAim: The present in silico study aimed to evaluate the ATP-binding cassette (ABC) transporter inhibition potential of Bulbine frutescens (B. frutescens) phytochemicals. Methods: Several previous studies and databases were used to retrieve the ligands and target protein structure. The molecular docking study was performed using the Auto Dock Tools, and the GROMACS package was applied to accomplish molecular dynamics simulation. Results: Utilizing the molecular docking and simulation approach, ?25 phytochemicals were screened against the ABC transporter protein. Docking score analysis revealed that B. frutescens phytochemical 4?-Demethylknipholone 2?-?-D-glucopyranoside exhibited strong binding on the ABC transporter protein with a minimum binding score -9.8 kcal/mol in comparison to the standard ABC transporter inhibitor diltiazem (-6.86 kcal/mol). Furthermore, molecular dynamics simulation for 4?-Demethylknipholone 2?-?-D-glucopyranoside showed an acceptable root mean square deviation, radius of gyration, root mean square fluctuation, and hydrogen bond, in addition to other lead compounds. Conclusion: The in-silico study demonstrated that B. frutescens phytochemical 4?-Demethylknipholone 2?-?-D-glucopyranoside possesses anti-drug resistance properties and requires further testing in preclinical settings. � 2021 The Author(s).Item Characterization of phytochemicals and validation of antioxidant and anticancer activity in some Indian polyherbal ayurvedic products(Springer, 2021-03-13T00:00:00) Kushwaha, Prem Prakash; Kumar, Ramesh; Neog, Panchi Rani; Behara, Malay Ranjan; Singh, Pratibha; Kumar, Ajay; Prajapati, Kumari Sunita; Singh, Atul Kumar; Shuaib, Mohd; Sharma, Amit Kumar; Pandey, Abhay Kumar; Kumar, ShashankIn the present comparative study, the authors studied the antioxidant and anticancer activity of commercially available polyherbal Indian Ayurvedic products namely Divya Sarvakalp Kwath (DSKK), Divya Sanjivani Vati (DSV), Kanchanar Guggulu (KG) and Shakti Drop (SD). Authors also quantified phenolic and flavonoid contents in the samples. Solid powdered samples (DSKK, DSV, and KG) were extracted in methanol and water (1:1) using cold extraction method. Spectrophotometry technique was used to quantify the phytochemicals present in test samples. DSKK showed comparatively higher content of total phenolics (247.65 � 0.05 ?gPGE/g) and flavonoid (34.66 � 0.19 �gQE/mg). Radical scavenging, metal ion chelation and reducing potential of test products were studied using nitric oxide scavenging, DPPH, metal ion chelation, reducing power ability, and phosphomolybdate in vitro antioxidant assays at different concentration. Dose-dependent antioxidant activity was observed in all the test samples at 100�500��g or �l/ml concentration. Anticancer efficacy of the test samples were studied in lung (A549), colon (Colo205), and breast cancer (MCF7) cell lines at different concentrations (10�100��g or �l/ml) using MTT assay. Confocal microscopy was used to reveal the apoptotic induction, mitochondrial membrane integrity disruption and reactive oxygen species production ability of test products in cancer cells. The present study revealed that DSKK possesses comparatively better antioxidant potential and SD has potent anticancer activity against breast cancer cells. � 2021, Society for Plant Research.Item Contributions of human ACE2 and TMPRSS2 in determining host�pathogen interaction of COVID-19(Springer, 2021-02-25T00:00:00) Senapati, Sabyasachi; Banerjee, Pratibha; Bhagavatula, Sandilya; Kushwaha, Prem Prakash; Kumar, ShashankSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is at present an emerging global public health crisis. Angiotensin converting enzyme 2 (ACE2) and trans-membrane protease serine 2 (TMPRSS2) are the two major host factors that contribute to the virulence of SARS-CoV-2 and pathogenesis of coronavirus disease-19 (COVID-19). Transmission of SARS-CoV-2 from animal to human is considered a rare event that necessarily requires strong evolutionary adaptations. Till date no other human cellular receptors are identified beside ACE2 for SARS-CoV-2 entry inside the human cell. Proteolytic cleavage of viral spike (S)-protein and ACE2 by TMPRSS2 began the entire host�pathogen interaction initiated with the physical binding of ACE2 to S-protein. SARS-CoV-2 S-protein binds to ACE2 with much higher affinity and stability than that of SARS-CoVs. Molecular interactions between ACE2-S and TMPRSS2-S are crucial and preciously mediated by specific residues. Structural stability, binding affinity and level of expression of these three interacting proteins are key susceptibility factors for COVID-19. Specific protein�protein interactions (PPI) are being identified that explains uniqueness of SARS-CoV-2 infection. Amino acid substitutions due to naturally occurring genetic polymorphisms potentially alter these PPIs and poses further clinical heterogeneity of COVID-19. Repurposing of several phytochemicals and approved drugs against ACE2, TMPRSS2 and S-protein have been proposed that could inhibit PPI between them. We have also identified some novel lead phytochemicals present in Azadirachta indica and Aloe barbadensis which could be utilized for further in vitro and in vivo anti-COVID-19 drug discovery. Uncovering details of ACE2-S and TMPRSS2-S interactions would further contribute to future research on COVID-19. � 2021, Indian Academy of Sciences.Item Five-Decade Update on Chemopreventive and Other Pharmacological Potential of Kurarinone: a Natural Flavanone(Frontiers Media S.A., 2021-09-27T00:00:00) Kumar, Shashank; Prajapati, Kumari Sunita; Shuaib, Mohd; Kushwaha, Prem Prakash; Tuli, Hardeep Singh; Singh, Atul KumarIn the present article we present an update on the role of chemoprevention and other pharmacological activities reported on kurarinone, a natural flavanone (from 1970 to 2021). To the best of our knowledge this is the first and exhaustive review of kurarinone. The literature was obtained from different search engine platforms including PubMed. Kurarinone possesses anticancer potential against cervical, lung (non-small and small), hepatic, esophageal, breast, gastric, cervical, and prostate cancer cells. In vivo anticancer potential of kurarinone has been extensively studied in lungs (non-small and small) using experimental xenograft models. In in vitro anticancer studies, kurarinone showed IC50 in the range of 2�62��M while in vivo efficacy was studied in the range of 20�500�mg/kg body weight of the experimental organism. The phytochemical showed higher selectivity toward cancer cells in comparison to respective normal cells. kurarinone inhibits cell cycle progression in G2/M and Sub-G1 phase in a cancer-specific context. It induces apoptosis in cancer cells by modulating molecular players involved in apoptosis/anti-apoptotic processes such as NF-?B, caspase 3/8/9/12, Bcl2, Bcl-XL, etc. The phytochemical inhibits metastasis in cancer cells by modulating the protein expression of Vimentin, N-cadherin, E-cadherin, MMP2, MMP3, and MMP9. It produces a cytostatic effect by modulating p21, p27, Cyclin D1, and Cyclin A proteins in cancer cells. Kurarinone possesses stress-mediated anticancer activity and modulates STAT3 and Akt pathways. Besides, the literature showed that kurarinone possesses anti-inflammatory, anti-drug resistance, anti-microbial (fungal, yeast, bacteria, and Coronavirus), channel and transporter modulation, neuroprotection, and estrogenic activities as well as tyrosinase/diacylglycerol acyltransferase/glucosidase/aldose reductase/human carboxylesterases 2 inhibitory potential. Kurarinone also showed therapeutic potential in the clinical study. Further, we also discussed the isolation, bioavailability, metabolism, and toxicity of Kurarinone in experimental models. � Copyright � 2021 Kumar, Prajapati, Shuaib, Kushwaha, Tuli and Singh.Item Geminin a multi task protein involved in cancer pathophysiology and developmental process: A review(Elsevier B.V., 2016) Kushwaha, Prem Prakash; Rapalli, Krishna Chaitanya; Kumar, ShashankDNA replicates in a timely manner with each cell division. Multiple proteins and factors are involved in the initiation of DNA replication including a dynamic interaction between Cdc10-dependent transcript (Cdt1) and Geminin (GMNN). A conformational change between GMNN-Cdt1 heterotrimer and heterohexamer complex is responsible for licensing or inhibition of the DNA replication. This molecular switch ensures a faithful DNA replication during each S phase of cell cycle. GMNN inhibits Cdt1-mediated minichromosome maintenance helicases (MCM) loading onto the chromatin-bound origin recognition complex (ORC) which results in the inhibition of pre-replication complex assembly. GMNN modulates DNA replication by direct binding to Cdt1, and thereby alters its stability and activity. GMNN is involved in various stages of development such as pre-implantation, germ layer formation, cell commitment and specification, maintenance of genome integrity at mid blastula transition, epithelial to mesenchymal transition during gastrulation, neural development, organogenesis and axis patterning. GMNN interacts with different proteins resulting in enhanced hematopoietic stem cell activity thereby activating the development-associated genes' transcription. GMNN expression is also associated with cancer pathophysiology and development. In this review we discussed the structure and function of GMNN in detail. Inhibitors of GMNN and their role in DNA replication, repair, cell cycle and apoptosis are reviewed. Further, we also discussed the role of GMNN in virus infected host cells. ? 2016 Elsevier B.V. and Soci?t? Fran?aise de Biochimie et Biologie Mol?culaire (SFBBM)Item Green Synthesis of Bimetallic Au/Ag Nanostructures Using Aqueous Extract of Eichhornia crassipes for Antibacterial Activity(Springer, 2022-02-12T00:00:00) Halder, Arindom; Biswas, Rathindranath; Kushwaha, Prem Prakash; Halder, Krishna Kamal; Ahmed, Imtiaz; Singh, Harjinder; Kumar, Shashank; Haldar, Krishna KantaBiosynthesis of nanostructured materials is an arising feature of the interdisciplinary relationship between nanotechnology and biotechnology and acquiring consideration because of developing interest to foster ecologically favorable innovations in material preparation. In the present study, we synthesized an environmentally friendly and green method for the synthesis of gold/silver bimetallic nanostructure using Eichhornia crassipes leaf extract as reducing and capping agent. Au/Ag nanostructures were characterized by UV�Visible spectroscopy, X-ray photoelectron spectroscopy, and power X-ray diffraction. Transmission electron microscopy images also confirmed the formation of Au/Ag nanostructures. Antibacterial activity of Au/Ag nanostructures was studied and it has been found that Ag/Au nanostructure at 100��M concentration significantly inhibited the bacterial growth of Escherichia coli bacteria. Moreover, the Hoechst 33342 staining method was used to study the effect of Ag/Au nanostructure particles on the morphological changes in breast cancer cell (MDA-MB-231) nucleus. Staining of the Ag/Au nanostructure particle�treated MDA-MB-231 cells (4�h treatments) showed the appearance of emblematic features of apoptosis such as cell membrane blabbing and shrinkage. Graphical Abstract: [Figure not available: see fulltext.]. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Identification of cancer stemness related miRNA(s) using integrated bioinformatics analysis and in vitro validation(Springer Science and Business Media Deutschland GmbH, 2021-09-23T00:00:00) Prajapati, Kumari Sunita; Shuaib, Mohd; Kushwaha, Prem Prakash; Singh, Atul Kumar; Kumar, ShsahankThe stemness property of cells allows them to sustain their lineage, differentiation, proliferation, and regeneration. MicroRNAs are small non-coding RNAs known to regulate the stemness property of cells by regulating the expression of stem cell signaling pathway proteins at mRNA level. Dysregulated miRNA expression and associated stem cell signaling pathways in normal stem cells give rise to cancer stem cells. Thus, the present study was aimed to identify the miRNAs involved in the regulation of major stem cell signaling pathways. The proteins (n = 36) involved in the signaling pathways viz., Notch, Wnt, JAK-STAT, and Hedgehog which is associated with the stemness property was taken into the consideration. The miRNAs, having binding sites for the targeted protein-encoding gene were predicted using an online tool (TargetScan) and the common miRNA among the test pathways were identified using Venn diagram analysis. A total of 22 common miRNAs (including 8 non-studied miRNAs) were identified which were subjected to target predictions, KEGG pathway, and gene ontology (GO) analysis to study their potential involvement in the stemness process. Further, we studied the clinical relevance of the non-studied miRNAs by performing the survival analysis and their expression levels in clinical breast cancer patients using the TCGA database. The identified miRNAs showed overall poor survival in breast cancer patients. The miR-6844 showed significantly high expression in various clinical subgroups of invasive breast cancer patients compared with the normal samples. The expression levels of identified miRNA(s) were validated in breast normal, luminal A, triple-negative, and stem cells in vitro models using qRT-PCR analysis. Further treatment with the phytochemical showed excellent down regulation of the lead miRNA. Overall the study first time reports the association of four miRNAs (miR-6791, miR-4419a, miR-4251 and miR-6844) with breast cancer stemness. � 2021, King Abdulaziz City for Science and Technology.Item Identification of FDA approved drugs and nucleoside analogues as potential SARS-CoV-2 A1pp domain inhibitor: An in silico study(Elsevier Ltd, 2020-12-19T00:00:00) Singh, Atul Kumar; Kushwaha, Prem Prakash; Prajapati, Kumari Sunita; Shuaib, Mohd; Gupta, Sanjay; Kumar, ShashankCoronaviruses are known to infect respiratory tract and intestine. These viruses possess highly conserved viral macro domain A1pp having adenosine diphosphate (ADP)-ribose binding and phosphatase activity sites. A1pp inhibits adenosine diphosphate (ADP)-ribosylation in the host and promotes viral infection and pathogenesis. We performed in silico screening of FDA approved drugs and nucleoside analogue library against the recently reported crystal structure of SARS-CoV-2 A1pp domain. Docking scores and interaction profile analyses exhibited strong binding affinity of eleven FDA approved drugs and five nucleoside analogues NA1 (?13.84), nadide (?13.65), citicholine (?13.54), NA2 (?12.42), and NA3 (?12.27). The lead compound NA1 exhibited significant hydrogen bonding and hydrophobic interaction at the natural substrate binding site. The root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface (SASA), hydrogen bond formation, principle component analysis, and free energy landscape calculations for NA1 bound protein displayed stable complex formation in 100 ns molecular dynamics simulation, compared to unbound macro domain and natural substrate adenosine-5-diphosphoribose bound macro domain that served as a positive control. The molecular mechanics Poisson�Boltzmann surface area analysis of NA1 demonstrated binding free energy of ?175.978 � 0.401 kJ/mol in comparison to natural substrate which had binding free energy of ?133.403 � 14.103 kJ/mol. In silico analysis by modelling tool ADMET and prediction of biological activity of these compounds further validated them as putative therapeutic molecules against SARS-CoV-2. Taken together, this study offers NA1 as a lead SARS-CoV-2 A1pp domain inhibitor for future testing and development as therapeutics against human coronavirus. � 2020Item Identification of miRNAs and related hub genes associated with the triple negative breast cancer using integrated bioinformatics analysis and in vitro approach(Taylor and Francis Ltd., 2021-08-13T00:00:00) Shuaib, Mohd; Prajapati, Kumari Sunita; Singh, Atul Kumar; Kushwaha, Prem Prakash; Waseem, Mohammad; Kumar, ShashankTriple negative breast cancer (TNBC) is an aggressive breast cancer subtype generally associated with younger women. Due to the lack of suitable drugable targets in TNBC, the microRNAs are considered as a better hope as therapeutic agents for the management of the disease. In this study, we identified differentially expressed miRNAs (DEMs) and associated hub genes in TNBC microarray data (GSE38167, GSE60714, and GSE10833) using bioinformatics tools. The identified miRNAs and genes were validated in the TNBC cell line model (MDA-MB-231) compared with the normal breast cells (MCF-10A) using the qRT-PCR technique. False-positive DEMs were avoided by comparing the DEMs profile of TNBC and triple positive breast cancer (TPBC) cell line model (BT474) compared with the MCF-10A cells data. In addition, we studied the effect of anticancer phytochemicals on the differential expression of miRNAs and genes in MDA-MB-231 cells. Furthermore, target predictions, functional enrichment and KEGG pathway analysis, mutation and copy number alterations, and overall survival analysis of DEMs in TNBC sample was investigated using standard computational tools. The study identifies first time the association of hsa-miR-1250, has-miR-1273, and has-miR-635 with the TNBC. DEMs showed significant association with the Wnt, ErbB, PI3-Akt and cAMP signaling pathways having clinical implications in TNBC tumorigenesis. The DEMs and hub genes (HOXC6 and ACVR2B) showed survival disadvantages in TNBC patients. In summary, the identified miRNAs and hub genes show important implications in TNBC tumorigenesis and patient survival. We recommend further experimental studies on pathophysiological mechanism of the identified miRNAs and hub genes in TNBC. Communicated by Ramaswamy H. Sarma. � 2021 Informa UK Limited, trading as Taylor & Francis Group.Item Identification of Natural Inhibitors Against SARS-CoV-2 Drugable Targets Using Molecular Docking, Molecular Dynamics Simulation, and MM-PBSA Approach(Frontiers Media S.A., 2021-08-12T00:00:00) Kushwaha, Prem Prakash; Singh, Atul Kumar; Bansal, Tanya; Yadav, Akansha; Prajapati, Kumari Sunita; Shuaib, Mohd; Kumar, ShashankThe present study explores the SARS-CoV-2 drugable target inhibition efficacy of phytochemicals from Indian medicinal plants using molecular docking, molecular dynamics (MD) simulation, and MM-PBSA analysis. A total of 130 phytochemicals were screened against SARS-CoV-2 Spike (S)-protein, RNA-dependent RNA polymerase (RdRp), and Main protease (Mpro). Result of molecular docking showed that Isoquercetin potentially binds with the active site/protein binding site of the Spike, RdRP, and Mpro targets with a docking score of -8.22, -6.86, and -9.73 kcal/mole, respectively. Further, MS�3, 7-Hydroxyaloin B, 10-Hydroxyaloin A, showed -9.57, -7.07, -8.57 kcal/mole docking score against Spike, RdRP, and Mpro targets respectively. The MD simulation was performed to study the favorable confirmation and energetically stable complex formation ability of Isoquercetin and 10-Hydroxyaloin A phytochemicals in Mpro-unbound/ligand bound/standard inhibitor bound system. The parameters such as RMSD, RMSF, Rg, SASA, Hydrogen-bond formation, energy landscape, principal component analysis showed that the lead phytochemicals form stable and energetically stabilized complex with the target protein. Further, MM-PBSA analysis was performed to compare the Gibbs free energy of the Mpro-ligand bound and standard inhibitor bound complexes. The analysis revealed that the His-41, Cys145, Met49, and Leu27 amino acid residues were majorly responsible for the lower free energy of the complex. Drug likeness and physiochemical properties of the test compounds showed satisfactory results. Taken together, the study concludes that that the Isoquercetin and 10-Hydroxyaloin A phytochemical possess significant efficacy to bind SARS-Cov-2 Mpro active site. The study necessitates further in vitro and in vivo experimental validation of these lead phytochemicals to assess their anti-SARS-CoV-2 potential. � Copyright � 2021 Kushwaha, Singh, Bansal, Yadav, Prajapati, Shuaib and Kumar.Item Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies(Taylor and Francis Ltd., 2020-06-01T00:00:00) Gupta, Sanjay; Singh, Atul Kumar; Kushwaha, Prem Prakash; Prajapati, Kumari Sunita; Shuaib, Mohd; Senapati, Sabyasachi; Kumar, ShashankCoronaviruses are contagious pathogens primarily responsible for respiratory and intestinal infections. Research efforts to develop antiviral agents against coronavirus demonstrated the main protease (Mpro) protein may represent effective drug target. X-ray crystallographic structure of the SARS-CoV2 Mpro protein demonstrated the significance of Glu166, Cys141, and His41 residues involved in protein dimerization and its catalytic function. We performed in silico screening of compounds from Curcuma longa L. (Zingiberaceae family) against Mpro protein inhibition. Employing a combination of molecular docking, scoring functions, and molecular dynamics simulations, 267 compounds were screened by docking on Mpro crystallographic structure. Docking score and interaction profile analysis exhibited strong binding on the Mpro catalytic domain with compounds C1 (1E,6E)-1,2,6,7-tetrahydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione) and C2 (4Z,6E)?1,5?dihydroxy?1,7?bis(4?hydroxyphenyl)hepta?4,6?dien?3?one as lead agents. Compound C1 and C2 showed minimum binding score (�9.08 and �8.07 kcal/mole) against Mpro protein in comparison to shikonin and lopinavir (? ?5.4 kcal/mole) a standard Mpro inhibitor. Furthermore, principal component analysis, free energy landscape and protein-ligand energy calculation studies revealed that these two compounds strongly bind to the catalytic core of the Mpro protein with higher efficacy than lopinavir, a standard antiretroviral of the protease inhibitor class. Taken together, this structure based optimization has provided lead on two natural Mpro inhibitors for further testing and development as therapeutics against human coronavirus. Communicated by Ramaswamy H. Sarma. � 2020 Informa UK Limited, trading as Taylor & Francis Group.Item In silico identification of natural anticancer product and their efficacy in breast cancer cells and cancer stem like cells(Central University of Punjab, 2020) Kushwaha, Prem Prakash; Kumar, ShashankBreast cancer is the most commonly diagnosed lethal cancer in women worldwide. Notch signaling pathway is directly linked to breast cancer recurrence and aggressiveness. Natural remedies are becoming a prime choice to overcome against cancer due to lesser side effect and cost-effectiveness. Literature survey and in silico study identified Bulbine frutescens (Asphodelaceae), Kurarinone (KU) and 3-O-(E)-p- coumaroylbetulinic acid (CB) as lead plant product/phytochemicals. Methanolic and hexane extract of B. frutescens (BME and BHE respectively), KU and CB were studied for their anticancer activity and notch signaling pathway inhibitory potential in breast cancer cells. Moreover, KU and CB were also studied for their effect in mammosphere. Literature-based identification of methanol soluble phytochemicals of B. frutescens and in silico docking study revealed Bulbineloneside D as a potent notch signaling inhibitor (ϒ-secretase). In silico docking potential of KU and CB were equal to standard gamma secretase inhibitor DAPT (-8.74 kcal/mol). KU-gamma secretase complex showed lower RMSD value, marginal fluctuation in Radius of gyration (Rg), more number of inter hydrogen bonding, and stable secondary structure of the protein which indicates KU as candidate gamma secretase inhibitor (GSI). B. frutescens extracts (IC50 4.8– 28.4 μg/ml), Kurarinone (IC50 0.43-3.42 µM) and CB (IC50 0.99-5.88 µM) significantly decreased cell viability in MDA-MB-231 and T47D cells in time dependent manner. B. frutescens, KU and CB induced cell cycle arrest at G1 phase in MDA-MB-231 and T47D cells. RT-PCR analysis of cell cycle (cyclin D1, CDK4, and p21) and apoptosis modulating genes (caspase 3, Bcl2 and survivin) revealed upexpression of p21, and caspase 3, and down expression of cyclin D1, CDK4, Bcl2 and survivin genes in test extract/phytochemicals treated breast cancer cells. Western Blot analysis showed reduced expression of cyclin D1 and increased procaspase 3 protein expression in extract/phytochemicals treated breast cancer cells in time dependent manner. Fluorescence spectrophotometry and confocal microscopy showed extract/phytochemicals induced nuclear morphology and mitochondrial integrity disruption, and increased reactive oxygen species production in MDA-MB-231 and T47D cells at IC50 and sub IC50 concentration. Flow cytometric apoptosis analysis of extract/phytochemicals treated MDA-MB-231 cells showed significant increase in early apoptotic population in comparison to non-treated cells at IC50 and sub IC50 (half of the IC50) concentration. Dual-Luciferase Reporter assay confirmed notch promoter inhibitory activity of B. frutescens, Kurarinone and CB in HEK293 transfected cells at IC50 concentration. Moreover, RT-PCR analysis showed down regulation of notch responsive genes (Hes1 and Hey1) at transcription levels in extract/phytochemical treated breast cancer cells in time dependent manner. Western Blot analysis showed reduced notch responsive protein (Hes1, Hey1 and E-cadherin) expression in extract/phytochemical treated breast cancer cells. KU and CB treatment decreased the mammosphere formation ability in MCF-7 cells at IC50 concentration by lowering the notch signaling target proteins (Hes1, Hey1, and E-cadherin) and proteins involved in cancer cell self-renewal (c-Myc, SOX-2, CD44). In conclusion, extract/phytochemicals have cell cycle arrest, ROS production, apoptosis induction, and mitochondria membrane potential disruption efficacy in breast cancer cells. KU and CB have the ability to downregulate the notch signaling pathway in breast cancer and cancer stem like cells.Item Long non-coding RNA regulating androgen receptor signaling in breast and prostate cancer(Elsevier Ireland Ltd, 2021-02-07T00:00:00) Kumar, Shashank; Prajapati, Kumari Sunita; Singh, Atul Kumar; Kushwaha, Prem Prakash; Shuaib, Mohd; Gupta, SanjayThe human genome transcribe an array of RNAs that do not encode proteins and may act as mediators in the regulation of gene expression. Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs consisting of more than 200 nucleotides of RNA transcripts that play important role in tumor development. Numerous lncRNAs have been characterized as functional transcripts associated with several biological processes and pathologic stages. Although the biological function and molecular mechanisms of lncRNAs remains to be explored, recent studies demonstrate aberrant expression of several lncRNAs linked with various human cancers. The present review summarizes the current knowledge of lncRNA expression patterns and mechanisms that contribute to carcinogenesis. In particular, we focus on lncRNAs regulating androgen receptor signaling pathways in prostate and breast cancer subtype having prognostic and therapeutic implications. � 2021 Elsevier B.V.Item miRNAs as Therapeutic Target in Obesity and Cancer(Springer Singapore, 2021-07-18T00:00:00) Prajapati, Kumari Sunita; Shuaib, Mohd; Kushwaha, Prem Prakash; Singh, Atul Kumar; Sharma, Rahul; Kumar, ShashankMicroRNAs are small non-coding RNAs that regulate the expression of many genes. Alteration of microRNA expressions is associated with the occurrence of diseases including cancer, obesity, and obesity-related cancer. miRNAs are also known to regulate different cancer-related gene expressions indicating microRNAs could function as tumor suppressors and oncogenes. Obesity and cancer are the two critical diseases affecting millions of people all over the world. Obesity has been associated with incidence and a major risk factor for the occurrence of diseases like diabetes, cardiovascular disease, and various cancers. Synthesis of miRNAs-based therapeutics like miRNA mimics, anti-miR oligonucleotides is going on to cure obesity, cancer, and obesity-associated cancer. miRNAs emerged as a potential biomarker and being considered as a diagnostic, prognostic, and therapeutic target for the treatment of obesity, cancer, and obesity-associated cancer. � The Editor(s) (if applicable) and The Author(s), under exclusive license to Taylor and Francis Pte Ltd. 2021.Item Naphthylisoindolinone alkaloids: the first ring-contracted naphthylisoquinolines, from the tropical liana Ancistrocladus abbreviatus, with cytotoxic activity(Royal Society of Chemistry, 2022-10-12T00:00:00) Fayez, Shaimaa; Bruhn, Torsten; Feineis, Doris; Assi, Laurent Ak�; Kushwaha, Prem Prakash; Kumar, Shashank; Bringmann, GerhardThe West African liana Ancistrocladus abbreviatus is a rich source of structurally most diverse naphthylisoquinoline alkaloids. From its roots, a series of four novel representatives, named ancistrobrevolines A-D (14-17) have now been isolated, displaying an unprecedented heterocyclic ring system, where the usual isoquinoline entity is replaced by a ring-contracted isoindolinone part. Their constitutions were elucidated by 1D and 2D NMR and HR-ESI-MS. The absolute configurations at the chiral axis and at the stereogenic center were assigned by using experimental and computational electronic circular dichroism (ECD) investigations and a ruthenium-mediated oxidative degradation, respectively. For the biosynthetic origin of the isoindolinones from �normal� naphthyltetrahydroisoquinolines, a hypothetic pathway is presented. It involves oxidative decarboxylation steps leading to a ring contraction by a benzilic acid rearrangement. Ancistrobrevolines A (14) and B (15) were found to display moderate cytotoxic effects (up to 72%) against MCF-7 breast and A549 lung cancer cells and to reduce the formation of spheroids (mammospheres) in the breast cancer cell line. � 2022 The Royal Society of Chemistry.Item Neuroprotective and Neurorescue Mode of Action of Bacopa monnieri (L.) Wettst in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Parkinson�s Disease: An In Silico and In Vivo Study(Frontiers Media S.A., 2021-03-16T00:00:00) Singh, Babita; Pandey, Shivani; Rumman, Mohammad; Kumar, Shashank; Kushwaha, Prem Prakash; Verma, Rajesh; Mahdi, Abbas AliEthnopharmacological Relevance: Parkinson�s disease (PD) is characterized by progressive death of dopaminergic neurons. The presently used medicines only tackle the symptoms of PD, but none makes a dent on the processes that underpin the disease�s development. Herbal medicines have attracted considerable attention in recent years. Bacopa monnieri (L.) Wettst (Brahmi) has been used in Indian Ayurvedic medicine to enhance memory and intelligence. Herein, we assessed the neuroprotective role of Bacopa monnieri (L.) Wettst on Parkinson�s disease. Aim of the Study: Bacopa monnieri (L.) Wettst, a medicinal herb, is widely used as a brain tonic. We investigated the neuroprotective and neurorescue properties of Bacopa monnieri (L.) Wettst extract (BME) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice model of PD. Materials and Methods: The mice model of MPTP-induced PD is used in the study. In the neuroprotective (BME + MPTP) and neurorescue (MPTP + BME) experiments, the animals were administered 40�mg/kg body weight BME orally before and after MPTP administration, respectively. Effect of BME treatment was evaluated by accessing neurobehavioral parameters and levels of dopamine, glutathione, lipid peroxide, and nitrites. An in silico study was performed using AutoDock Tools 1.5.6 (ADT). Results: A significant recovery in behavioral parameters, dopamine level, glutathione level, lipid peroxides, and nitrite level was observed in BME-treated mice. Treatment with BME before or after MPTP administration has a protective effect on dopaminergic neurons, as evidenced by a significant decrease in GFAP immunostaining and expression of inducible nitric oxide synthase (iNOS) in the substantia nigra region; however, the degree of improvement was more prominent in mice receiving BME treatment before MPTP administration. Moreover, the in silico study revealed that the constituents of BM, including bacosides, bacopasides, and bacosaponins, can inactivate the enzyme monoamine oxidase B, thus preventing the breakdown of MPTP to MPP+. Conclusion: Our results showed that BME exerts both neuroprotective and neurorescue effects against MPTP-induced degeneration of the nigrostriatal dopaminergic neurons. Moreover, BME may slow down the disease progression and delay the onset of neurodegeneration in PD. � Copyright � 2021 Singh, Pandey, Rumman, kumar, Kushwaha, Verma and Mahdi.Item Novel potent inhibitors of Plasmodium vivax dihydrofolate reductase: An in silico antimalarial drug discovery(Association of Pharmaceutical Teachers of India, 2018) Pushpendra, Singh; Kushwaha, Prem Prakash; Shashank, KumarObjectives: In the present study, we targeted the dihydrofolate reductase enzyme that catalyzes the reduction of dihydrofolate to tetrahydrofolate which is required for the purines and pyrimidine synthesis. Malaria is one of the severe diseases throughout the world caused by blood-borne parasite Plasmodium vivax. Materials and Methods: Eighty-five parthenin analogs were docked against P. vivax and Homo sapiens dihydrofolate reductase proteins (PDB 2BL9 and 1KMS respectively) by using Maestro 9.6 program to evaluate the binding affinities of ligands with the protein. Results and Discussion: Docking analysis revealed some best hit ligands against P. vivax such as CID3467446 and CID56671343 but not inhibited the mammalian dihydrofolate reductase. The Dock score of parthenin analogs ranged from -7.31 to -9.3 while for standard dihydrofolate reductase inhibitors it was -4.78 to -8.04. Structural analysis of docked complexes of selected parthenin like compounds with P. vivax and mammalian dihydrofolate reductase revealed the involvement of Arg 115, Leu 136, Lys 138, Gly 175, Ser 117, Gln 177 and Ile 7, Ala 9, Thr 56, Ile 60, Pro 61 amino acid residues respectively in strong interactions. Absorption, distribution, metabolism, and excretion properties of best-docked compounds were predicted using QikProp application of Maestro 9.6. The results indicated that all the best-docked lead compounds followed Lipinski?s rule of five. Conclusion: Based on the results of the present study it has been concluded that parthenin like compounds may serve as potent dihydrofolate reductase inhibition based anti-malarial drug lead. ? 2018, Association of Pharmaceutical Teachers of India. All rights reserved.Item Phytochemicals present in Indian ginseng possess potential to inhibit SARS-CoV-2 virulence: A molecular docking and MD simulation study(Academic Press, 2021-05-24T00:00:00) Kushwaha, Prem Prakash; Singh, Atul Kumar; Prajapati, Kumari Sunita; Shuaib, Mohd; Gupta, Sanjay; Kumar, ShashankCoronaviruses are deadly and contagious pathogens that affects people in different ways. Researchers have increased their efforts in the development of antiviral agents against coronavirus targeting Mpro protein (main protease) as an effective drug target. The present study explores the inhibitory potential of characteristic and non-characteristic Withania somnifera (Indian ginseng) phytochemicals (n ? 100) against SARS-Cov-2 Mpro protein. Molecular docking studies revealed that certain W. somnifera compounds exhibit superior binding potential (?6.16 to ?12.27 kcal/mol) compared to the standard inhibitors (?2.55 to ?6.16 kcal/mol) including nelfinavir and lopinavir. The non-characteristic compounds (quercetin-3-rutinoside-7-glucoside, rutin and isochlorogenic acid B) exhibited higher inhibitory potential in comparison to characteristic W. somnifera compounds withanolide and withanone. Molecular dynamics (MD) simulation studies of the complex for 100 ns confirm favorable and stable binding of the lead molecule. The MMPBSA calculation of the last 10 ns of the protein-ligand complex trajectory exhibited stable binding of quercetin-3-rutinoside-7-glucoside at the active site of SARS-Cov-2 Mpro. Taken together, the study demonstrates that the non-characteristic compounds present in W. somnifera possess enhanced potential to bind SARS-Cov-2 Mpro active site. We further recommend in vitro and in vivo experimentation to validate the anti-SARS-CoV-2 potential of these lead molecules. � 2021 Elsevier Ltd