Browsing by Author "Madhyastha, Harishkumar"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Heavy Metal and Metalloid Contamination in Food and Emerging Technologies for Its Detection(Multidisciplinary Digital Publishing Institute (MDPI), 2023-01-09T00:00:00) Mukherjee, Anirban Goutam; Renu, Kaviyarasi; Gopalakrishnan, Abilash Valsala; Veeraraghavan, Vishnu Priya; Vinayagam, Sathishkumar; Paz-Montelongo, Soraya; Dey, Abhijit; Vellingiri, Balachandar; George, Alex; Madhyastha, Harishkumar; Ganesan, RajaHeavy metal and metalloid poisoning in the environment and food has piqued the public�s interest since it poses significant hazards to the ecological system and human health. In food, several metals, including cadmium (Cd), lead (Pb), mercury (Hg), tin (Sn), manganese (Mn), and aluminium (Al), and metalloids, including arsenic (As), antimony (Sb), and selenium (Se), pose a severe threat to human health. It is of utmost importance to detect even minute quantities of these toxic elements and this must be efficiently determined to understand their risk. Several traditional and advanced technologies, including atomic absorption spectrometry (AAS), spectrofluorimetry, inductively coupled plasma spectrometry, e-tongues, electrochemical aptasensors, Raman spectroscopy, and fluorescence sensors, among other techniques, have proven highly beneficial in quantifying even the minute concentrations of heavy metals and metalloids in food and dietary supplements. Hence, this review aims to understand the toxicity of these metals and metalloids in food and to shed light on the emerging technologies for their detection. � 2023 by the authors. Licensee MDPI, Basel, Switzerland.Item Onco-Pathogen Mediated Cancer Progression and Associated Signaling Pathways in Cancer Development(MDPI, 2023-05-28T00:00:00) Kannampuzha, Sandra; Gopalakrishnan, Abilash Valsala; Padinharayil, Hafiza; Alappat, Reema Rose; Anilkumar, Kavya V.; George, Alex; Dey, Abhijit; Vellingiri, Balachandar; Madhyastha, Harishkumar; Ganesan, Raja; Ramesh, Thiyagarajan; Jayaraj, Rama; Prabakaran, D.S.Infection with viruses, bacteria, and parasites are thought to be the underlying cause of about 8�17% of the world�s cancer burden, i.e., approximately one in every five malignancies globally is caused by an infectious pathogen. Oncogenesis is thought to be aided by eleven major pathogens. It is crucial to identify microorganisms that potentially act as human carcinogens and to understand how exposure to such pathogens occur as well as the following carcinogenic pathways they induce. Gaining knowledge in this field will give important suggestions for effective pathogen-driven cancer care, control, and, ultimately, prevention. This review will mainly focus on the major onco-pathogens and the types of cancer caused by them. It will also discuss the major pathways which, when altered, lead to the progression of these cancers. � 2023 by the authors.Item A Systematic Role of Metabolomics, Metabolic Pathways, and Chemical Metabolism in Lung Cancer(MDPI, 2023-02-08T00:00:00) Kannampuzha, Sandra; Mukherjee, Anirban Goutam; Wanjari, Uddesh Ramesh; Gopalakrishnan, Abilash Valsala; Murali, Reshma; Namachivayam, Arunraj; Renu, Kaviyarasi; Dey, Abhijit; Vellingiri, Balachandar; Madhyastha, Harishkumar; Ganesan, RajaLung cancer (LC) is considered as one of the leading causes of cancer-associated mortalities. Cancer cells� reprogrammed metabolism results in changes in metabolite concentrations, which can be utilized to identify a distinct metabolic pattern or fingerprint for cancer detection or diagnosis. By detecting different metabolic variations in the expression levels of LC patients, this will help and enhance early diagnosis methods as well as new treatment strategies. The majority of patients are identified at advanced stages after undergoing a number of surgical procedures or diagnostic testing, including the invasive procedures. This could be overcome by understanding the mechanism and function of differently regulated metabolites. Significant variations in the metabolites present in the different samples can be analyzed and used as early biomarkers. They could also be used to analyze the specific progression and type as well as stages of cancer type making it easier for the treatment process. The main aim of this review article is to focus on rewired metabolic pathways and the associated metabolite alterations that can be used as diagnostic and therapeutic targets in lung cancer diagnosis as well as treatment strategies. � 2023 by the authors.