Browsing by Author "Mathpal, Mohan Chandra"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Ferrites as an Alternative Source of Renewable Energy for Hydroelectric Cell(Springer Science and Business Media Deutschland GmbH, 2021-10-29T00:00:00) Mathpal, Mohan Chandra; Niraula, Gopal; Kumar, Promod; Chand, Mahesh; Singh, Manish Kumar; Sharma, Surender K.; Soler, Maria A. G.; Swart, H.C.There are many conventional ways of producing energy at large scales such as fossil fuels, hydroelectric power station, wind energy, solar cell plants, marine energy, etc., but most of these require bulky plantation, huge manpower, wide land occupation and are non-portable and expensive to handle too. In the twenty-first century, there is still a huge gap between worldwide energy supply and its demand. The advances in the technology sector have also increased the consumption of energy, but the sources of generating the renewable energy remain limited. In order to account for these problems in recent years, several methods have been adopted and a significant research in this direction has been made by the invention of the hydroelectric cell by Dr. R. K. Kotnala�s group in 2016. Instead of using the magnetic character in the ferrite nanostructures, these nanomaterials were first time effectively exploited for direct energy harvesting application by using their capability to dissociate the absorbed water molecules on its porous surface. This allows the production of ions, which is then followed by the charge transfer of hydronium, hydroxyl and hydrogen ions between the electrodes of the ferrite nanostructures and results in the generation of an electric current across the circuit. The concept of the hydroelectric cell is new, and these cells are easily portable, inexpensive, biodegradable and eco-friendly in nature. This chapter provides an insight on the concept of spinel ferrite nanostructures for the application in the hydroelectric cell. � 2021, Springer Nature Switzerland AG.Item Magnetic Nanoflowers: Synthesis, Formation Mechanism and Hyperthermia Application(Springer Science and Business Media Deutschland GmbH, 2021-10-29T00:00:00) Niraula, Gopal; Mathpal, Mohan Chandra; Herrera, Edher Z.; Soler, Maria A. G.; Coaquira, Jose A. H.; Sharma, Surender K.Magnetic hyperthermia is becoming a very propitious supplementary technique for cancer treatments such as chemotherapy radiotherapy and radiotherapy. In this regard, magnetic nanoflowers (MNFs) are novel system in terms of morphology showing a structure similar to flower and exhibiting higher stability and enhanced heating efficiency when compared with similar nanoparticles displaying standard formats; enabling them for magneto-hyperthermia applications. In this chapter, different types of nanoflowers such as magnetic-oxide, magneto-plasmonic, and magnetic-organic/inorganic and their applicability are discussed. Moreover, a discussion on the most common chemical routes to design nanoflowers emphasizing hydro/solvothermal techniques, microwave-assisted hydrothermal, co-precipitations, and polyol are highlighted. Furthermore, the nucleation of MNFs and their growing process with a physical parameter are presented. At last, the magnetic hyperthermia properties of MNFs and their recent findings are critically scrutinized along with their future perspectives in biomedicine. � 2021, Springer Nature Switzerland AG.Item State of Art of Spinel Ferrites Enabled Humidity Sensors(Springer Science and Business Media Deutschland GmbH, 2021-10-29T00:00:00) Mathpal, Mohan Chandra; Niraula, Gopal; Chand, Mahesh; Kumar, Promod; Singh, Manish Kumar; Sharma, Surender K.; Soler, Maria A. G.; Swart, H.C.Controlling the moisture level in air and gases is an important aspect in defense, weather station, industry, laboratory and healthcare systems. The accurate measurement and sensing of the humidity/moisture level in the surrounding environment can help to maintain the temperature level for ideal living conditions; from a safety point of view, it can help to prevent the virus/disease transmission; importantly, it can protect expensive equipment, electronic devices and optical devices against damage which are sensitive to high humidity in the atmosphere. The controlled monitoring, regulation and management of humidity necessarily require humidity sensors with high sensitivity, high stability and low response time. Currently, there are various types of humidity sensors available in the market, but there are always limitations on the practical applications as the main problems are associated with their eco-friendly nature, cost, sensitivity, response time (rapid action) and lifetime. Aiming to address these issues, the spinel ferrite nanostructures arise as promising nanomaterials due to their moderate semiconducting features with high resistance, porous nature and high surface activities enabling easy fabrication of the humidity sensors. This chapter provides an overview of the role of spinel ferrite nanostructures for their applications in humidity sensors. � 2021, Springer Nature Switzerland AG.Item Superparamagnetic Iron Oxide-Based Nanomaterials for Magnetic Resonance Imaging(Springer Science and Business Media Deutschland GmbH, 2021-10-29T00:00:00) Niraula, Gopal; Mathpal, Mohan Chandra; Medrano, Jason J. A.; Singh, Manish Kumar; Coaquira, Jose A. H.; Verma, Ramesh; Sharma, Surender K.Magnetic resonance imaging (MRI) is the technique for the visualization of targeted macromolecules or cells in biological system. Nowadays, superparamagnetic iron oxide nanoparticles (SPIONs) have been attracted and remarkably emerging as a negative contrast agent (T2-weighted) offering sufficient detection sensitivity as compared to positive contrast agent (T1-weighted). In the present chapter, we first introduce the necessary background of superparamagnetic iron oxide-based nanoparticles and MRI taking into an account to discuss both T1�T2-weighted imaging. The liquid-based synthesis methods of SPIONs and their applicability in MRI have been thoroughly revised. Finally, several nanohybrids such as magnetic-silica, magneto-luminescent, magneto-plasmonic along with ferrite-based SPIONs are thoroughly presented in light of MRI application. � 2021, Springer Nature Switzerland AG.