Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Menezes, A.S. de"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    BiOBr/ZnWO4 heterostructures: An important key player for enhanced photocatalytic degradation of rhodamine B dye and antibiotic ciprofloxacin
    (Elsevier Ltd, 2022-11-07T00:00:00) Santana, Rafael W.R.; Lima, A.E.B.; Souza, Luiz K.C. de; Santos, Evelyn C.S.; Santos, C.C.; Menezes, A.S. de; Sharma, Surender K.; Cavalcante, L.S.; Maia da Costa, Marcelo E.H.; Sales, T.O.; Jacinto, Carlos; Luz, G.E.; Almeida, M.A.P.
    We report a facile synthesis of p-BiOBr/n-ZnWO4 heterostructures by hydrothermal/precipitation method as an important key player to enhance the photocatalytic degradation of Rhodamine B (RhB) dye and ciprofloxacin antibiotic. The structural and microstructural features confirm that p-BiOBr/n-ZnWO4 heterostructures display a mixed tetragonal/monoclinic phase with the presence of several n-ZnWO4 nanocrystals on the surface of petals of flower-like p-BiOBr microcrystals. X-ray photoluminescence (XPS) analysis of BiOBr exhibits the existence of Bi, O, and Br, whereas BiOBr/ZnWO4-5%, in addition to Bi, O, and Br, consist of signature of Zn and W. UV�Visible spectra of p-BiOBr/n-ZnWO4-5% showed better absorption than p-BiOBr and n-ZnWO4, which displayed an enhanced collection of photons in the heterojunction. An intense photoluminescence emission at room temperature was observed for p-BiOBr microcrystals as compared to p-BiOBr/n-ZnWO4. We observed the best photocatalytic activity for p-BiOBr/n-ZnWO4-2.5% in the degradation of RhB dye at 99.4% in 25 min and CIP antibiotic at 58.2% in 170 min, which is assigned due to high surface area SBET (13 m2/g), pore size, providing active catalytic sites for bonding chemical and surface interaction and bonding chemical between the bromide/oxides. Finally, we have investigated the use of scavengers for isopropanol, benzoquinone, and sodium azide, which proves that the hydroxyl (�OH) and superoxide (O2?) radicals as the foremost reactive oxygen spicies (ROS) in photocatalytic degradation of RhB dye and antibiotic CIP. � 2022 Elsevier Ltd

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify