Browsing by Author "Mete, Shouvik"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Efficient MoS2/V2O5 Electrocatalyst for Enhanced Oxygen and Hydrogen Evolution Reactions(Springer, 2023-04-29T00:00:00) Haldar, Krishna Kanta; Ahmed, Imtiaz; Biswas, Rathindranath; Mete, Shouvik; Patil, Ranjit A.; Ma, Yuan-RonElectrochemical (EC) water splitting is a promising approach for the generation of renewable hydrogen (H2) fuels and oxygen (O2) evolution. Composite structured molybdenum disulphide (MoS2)/vanadium pentoxide (V2O5) with low overpotential is a promising electrocatalyst for anodic and cathodic material for an alternative energy source. We fabricated a flower shape MoS2/V2O5 composite via a hydrothermal approach where V2O5grew on the surface of the MoS2 petals. The unique flower-type composite structure alleviates the surface expansion of electrode material. The electrochemical studies show that the composite possesses good stability with low overpotential and smaller Tafel slope compared to its constituents. It has been found that the MoS2/V2O5 composite exhibits a stable rate performance under the current density of 10�mA�cm?2 which indicates that the MoS2/V2O5 composite might be a good candidate for both oxygen and hydrogen evolution reactions.; Graphical Abstract: [Figure not available: see fulltext.] � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Genomic DNA-mediated formation of a porous Cu2(OH)PO4/Co3(PO4)2�8H2O rolling pin shape bifunctional electrocatalyst for water splitting reactions(Royal Society of Chemistry, 2022-01-28T00:00:00) Singh, Harjinder; Ahmed, Imtiaz; Biswas, Rathindranath; Mete, Shouvik; Halder, Krishna Kamal; Banerjee, Biplab; Haldar, Krishna KantaAmong the accessible techniques, the production of hydrogen by electrocatalytic water oxidation is the most established process, which comprises oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, we synthesized a genomic DNA-guided porous Cu2(OH)PO4/Co3(PO4)2�8H2O rolling pin shape composite structure in one pot. The nucleation and development of the porous rolling pin shape Cu2(OH)PO4/Co3(PO4)2�8H2O composite was controlled and stabilized by the DNA biomolecules. This porous rolling pin shape composite was explored towards electrocatalytic water oxidation for both OER and HER as a bi-functional catalyst. The as-prepared catalyst exhibited a very high OER and HER activity compared to its various counterparts in the absence of an external binder (such as Nafion). The synergistic effects between Cu and Co metals together with the porous structure of the composite greatly helped in enhancing the catalytic activity. These outcomes undoubtedly demonstrated the beneficial utilization of the genomic DNA-stabilised porous electrocatalyst for OER and HER, which has never been observed. This journal is � The Royal Society of Chemistry.Item Green Approach for the Fabrication of Au/ZnO Nanoflowers: A Catalytic Aspect(American Chemical Society, 2021-03-19T00:00:00) Biswas, Rathindranath; Banerjee, Biplab; Saha, Monochura; Ahmed, Imtiaz; Mete, Shouvik; Patil, Ranjit A.; Ma, Yuan-Ron; Haldar, Krishna KantaAn easy, environmentally benign, and biomimetic approach employing Azadirachta indica (neem) leaf extract as a reducing as well as capping agent was used for the fabrication of gold (Au)/zinc oxide (ZnO) hybrid nanoflowers in one pot without utilizing any hazardous chemicals. The different phytoconstituents, for example, nimbolide, azadirachtin, ascorbate, etc., present in A. indica (neem) leaf extract synergistically reduce gold(III) ions to gold(0), which later on acts as an active surface for the growth of zinc oxide (ZnO) via thermal decomposition of sodium zincate [Na2Zn(OH)4]. The development of Au/ZnO hybrid nanoflowers was observed by estimating the absorption maxima at various time intervals in the wake of adding a Au precursor to the aqueous extract. X-ray diffraction (XRD) studies and X-ray photoelectron spectroscopy (XPS) investigation unambiguously confirm the formation of highly crystalline Au/ZnO composed of Au(0) and ZnO. The as-synthesized Au/ZnO hybrid nanoflowers were analyzed utilizing different spectroscopic and microscopic techniques. The transmission electron microscopy (TEM) images clearly show that the synthesized hybrid Au/ZnO nanoflowers are monodisperse and uniform. The fabricated Au/ZnO nanoflowers were used as a catalyst for the efficient reduction of various aromatic nitro compounds to corresponding amino compounds with excellent yield (76-94%) in the presence of reducing agent sodium borohydride. The superior catalytic properties were credited to the extraordinary nanoflower morphology and the synergistic impact of the typified Au nanoparticles. � 2021 American Chemical Society.Item Mechanism of Iron Integration into LiMn1.5Ni0.5O4for the Electrocatalytic Oxygen Evolution Reaction(American Chemical Society, 2022-09-14T00:00:00) Ahmed, Imtiaz; Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Singh, Harjinder; Mete, Shouvik; Patil, Ranjit A.; Saha, Monochura; Yadav, Ashok Kumar; Jha, Sambhu Nath; Mondal, Krishnakanta; Singh, Harishchandra; Ma, Yuan-Ron; Haldar, Krishna KantaSpinel-type LiMn1.5Ni0.5O4 has been paid temendrous consideration as an electrode material because of its low cost, high voltage, and stabilized electrochemical performance. Here, we demonstrate the mechanism of iron (Fe) integration into LiMn1.5Ni0.5O4 via solution methods followed by calcination at a high temparature, as an efficient electrocatalyst for water splitting. Various microscopic and structural characterizations of the crystal structure affirmed the integration of Fe into the LiMn1.5Ni0.5O4 lattice and the constitution of the cubic LiMn1.38Fe0.12Ni0.5O4 crystal. Local structure analysis around Fe by extended X-ray absorption fine structure (EXAFS) showed Fe3+ ions in a six-coordinated octahedral environment, demonstrating incorporation of Fe as a substitute at the Mn site in the LiMn1.5Ni0.5O4 host. EXAFS also confirmed that the perfectly ordered LiMn1.5Ni0.5O4 spinel structure becomes disturbed by the fractional cationic substitution and also stabilizes the LiMn1.5Ni0.5O4 structure with structural disorder of the Ni2+ and Mn4+ ions in the 16d octahedral sites by Fe2+ and Fe3+ ions. However, we have found that Mn3+ ion production from the redox reaction between Mn4+ and Fe2+ influences the electronic conductivity significantly, resulting in improved electrochemical oxygen evolution reaction (OER) activity for the LiMn1.38Fe0.12Ni0.5O4 structure. Surface-enhanced Fe in LiMn1.38Fe0.12Ni0.5O4 serves as the electrocatalytic active site for OER, which was verified by the density functional theory study. � 2022 American Chemical Society.