Browsing by Author "Mittal S."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Amido-amine derivative of alginic acid (AmAA) for enhanced adsorption of Pb(II) from aqueous solution(Elsevier B.V., 2020) Vaid U.; Mittal S.; Babu J.N.; Kumar R.The present work reports the alternate synthesis of amido-amine derivative of alginic acid (AmAA) with high degree of functionalization. The AmAA have been characterized for percentage functionalization, functional group change, surface morphology and thermal decomposition behavior. The results indicate that the amido-amine derivatisation of alginic acid (AA) with >95% functionalization, significantly improves its Pb(II) adsorption efficiency (395.72 mg/g to 535.87 mg/g) over the AA. The equilibrium and kinetic studies showed that Langmuir and Freundlich adsorption isotherm models fitted well to the experimental data, and these followed pseudo-second order kinetic model. The FTIR (Fourier transform infrared spectroscopy) and 13C CP-MAS NMR (Cross-polarization magic angle spinning carbon-13 solid state nuclear magnetic resonance spectroscopy) analysis revealed that Pb(II) binds to the carboxyl group in case of AA and to the carbonyl & amine group in case of AmAA, which leads to increase in its adsorption efficiency. The study concludes that the functionalization of amido-amine on AA improves its adsorptive efficiency for Pb(II) from aqueous medium.Item Bio-analytical applications of nicking endonucleases assisted signal-amplification strategies for detection of cancer biomarkers -DNA methyl transferase and microRNA(Elsevier Ltd, 2019) Mittal S.; Thakur S.; Mantha A.K.; Kaur H.The low concentrations of cancer biomarkers in the blood have limited the utility of quantitative bioassays developed for the purpose. The advent of nicking endonucleases (NEases) as signal amplification tools have greatly enhanced the detection efficiency and provided a multi-optional platform to design target specific detection methods. The present review focuses on the prominent features of NEases, modified DNA probes (such as hairpin (HP) probes, molecular beacons, and G- quadruplex) that mediate cyclic cascade and role of helper enzymes. Application of NEase assisted signal amplification (NESA) has been discussed for diagnosis of two prominent cancer biomarkers viz. DNA methyl transferase (Dam MTase) and microRNA (miRNA). NESA mediated techniques such as rolling circle amplification (RCA), strand displacement amplification (SDA) and isothermal exponential amplification (EXPAR), have been compared in light of their future applications in clinical diagnosis. Significance of nanomaterials to achieve further amplification and NESA assays for simultaneous detection of miRNAs has also been conversed. It is anticipated that the information gained from the analyses of the prospects and limitations of NESA-based assays will be useful towards understanding the applications, and improvement of efficient isothermal exponential amplification strategies for highly sensitive and selective detection of cancer biomarkers.Item Geochemical relationship and translocation mechanism of arsenic in rice plants: A case study from health prone south west Punjab, India(Elsevier B.V., 2020) Sharma S.; Kumar R.; Sahoo P.K.; Mittal S.Rice is a recognised hyperaccumulator of arsenic (As) and is a serious concern for rice varieties grown in As contaminated soil-water systems. In this regard, groundwater, soil and rice-plant samples (two varieties: PR122 and PUSA1121) collected from 10 sites of district Bathinda were studied for their physicochemical characteristics and As concentration. In vitro studies were carried out to study the role of antioxidant enzymes in As uptake and translocation mechanism. The results showed that the As concentration in water and soil samples ranged from 54 to 132 ?g/L and 6.62–19.56 mg/kg, respectively. The As in rice roots, straw, husk and grains of PR122 ranged from 1.89 to 8.56, 0.20–5.3, 0.12–1.42, 0–0.12 mg/kg, respectively and 1.24–8.16, 0.54–5.11, 0.11–1.06 mg/kg and below detection limit (BDL), respectively for PUSA1121. Although a moderate correlation (r = 0.37) was observed between As in groundwater and soil, the higher As concentration found in both media in Behman and Teona areas indicates that we cannot ignore the role of groundwater in As contamination. Spearman correlation analysis indicates the positive impact of As from groundwater and soil in aerial parts of both rice varieties except grains. In vitro studies showed an increase in antioxidant enzyme activities with the increase in As toxicity (15–60 ?M), which indicates As tolerant behaviour in both rice varieties. The hazard quotient (HQ) for both rice varieties is < 1, which suggest no potential non-cancer health risk, however the cancer risk (CR) for PR122 variety exceeded (2.06 – 10?4) the acceptable limit of 1 × 10?4 (USEPA). Based on the present study, it can be concluded that both the rice varieties are tolerant to As and their grains are safe for human consumption.Item Ground/drinking water contaminants and cancer incidence: A case study of rural areas of South West Punjab, India(Taylor and Francis Inc., 2019) Kaur G.; Kumar R.; Mittal S.; Sahoo P.K.; Vaid U.This study was carried out in the rural areas of South West Punjab, India, to evaluate the groundwater quality and cancer incidence. The epidemiological study was carried using standardized questionnaire method, and the groundwater samples were analyzed for heavy metals by ICP-MS and AAS. The results showed that the cancer prevalence was highest in the age group of > 60, followed by >45–60 years old in both males and females. The average cancer rate in females (272 cases/lakh) was ?3 times higher than the India's national cancer average of 80 cases/lakh. The mean concentration of As(27.59 µg/L), Pb (48.3 µg/L), U (96.56 µg/L), NO3– (67.32 mg/L), and F– (4.7 mg/L) exceeded the drinking water limits of WHO/BIS. Health risk analysis indicated that As, Pb, U, and F– with NO3– are the major groundwater contaminants, which may be one of the potential cause of cancer incidences. Multivariate analyses reveal that anthropogenic activities are source of NO3–, whereas U, As, and F– are mainly of geogenic origin. The carcinogenic and non-carcinogenic risk followed in the order of As > Pb and U > F–>NO3–>Cu > Zn, respectively. Further, correlations between cancer incidence and groundwater quality have been discussed.Item Source apportionment, chemometric pattern recognition and health risk assessment of groundwater from southwestern Punjab, India(Springer, 2020) Kumar R.; Mittal S.; Sahoo P.K.; Sahoo S.K.The groundwater quality of southwestern Punjab, India, is a serious cause of concern due to the presence of chemical contaminants in it. However, limited studies of groundwater quality, sources of chemical contaminants and their health risks are available for the region. Hence, this study was conducted to investigate the source, distribution and potential health risk assessment of groundwater quality in three districts of southwestern Punjab, India. The spatial distribution of groundwater chemical contaminants and their potential health risks have been illustrated using inverse distance weighting interpolation technique. The concentration of fluoride (F?; ranged from 0.08 to 4.79 mg L−1) exceeded the WHO limit (1.5 µg L−1) in 80 and 50% samples collected from Bathinda and Ludhiana districts, respectively. The uranium (U) concentration ranged from 0.5 to 432 µg L−1 and shows ~ 85%, 75% and 10% of samples collected from Bathinda, Barnala and Ludhiana districts exceeded the WHO drinking water limit (30 µg L−1), respectively. The groundwater quality of the Bathinda district is a matter of concern due to elevated levels of alkalinity, hardness, fluoride, uranium and nitrate (NO3 ?). The principal component analysis shows close association between F? and U, which indicates their geogenic origin. Further, they also seem to be subordinately influenced by diffuse anthropogenic activities. The clustering of Cu and Pb with NO3 ? and SO4 2? indicates their anthropogenic origin. The non-carcinogenic health risk assessment indicates that F?, NO3 ? and U are the major health risk pollutants in the study area. The carcinogenic health risk of As and Cr exceeded the USEPA limits (10?6) in the entire study area, but observed to be more serious for the district Bathinda (10−3–10−5). The spatial distribution maps illustrate that the health risk for Bathinda district inhabitants is higher than Barnala and Ludhiana districts.