Browsing by Author "Mondal, Krishnakanta"
Now showing 1 - 14 of 14
Results Per Page
Sort Options
Item Ab Initio Modeling of the ZnO-Cu(111) Interface(American Chemical Society, 2021-12-31T00:00:00) Mondal, Krishnakanta; Megha; Banerjee, Arup; Fortunelli, Alessandro; Walter, Michael; Moseler, MichaelThe morphology at the catalytically active interfacial site of ZnO/Cu in the commercial ZnO/Cu/Al2O3 catalyst for CO2 hydrogenation to methanol is still an open question. In the present study, we employ ab initio density functional theory based methods to gain insight into the structure of the ZnO-Cu interface by investigating the morphology of supported ZnO nano-ribbons at the interface with the Cu(111) surface in the presence of hydrogen and water molecules. We find that the stabilities of free-standing ZnO nano-ribbons get enhanced when they are supported on the Cu(111) surface. These supported nano-ribbons are further stabilized by the adsorption of hydrogen atoms on the top of O atoms of the nano-ribbons. Interestingly, the hydrogenated nano-ribbons are found to be equally stable and they appear to be an array of independent chains of ZnOH motifs, suggesting that the hydrogenated nano-ribbons are structurally fluxional. The edge of these fluxional nano-ribbons is stabilized via a triangular reconstruction with a basic composition of Zn6O7H7 in the presence of water molecules. Such a triangular structure gets further stabilized when it is attached to a bulk-like part of the ZnO/Cu(111) system. Furthermore, we find that the triangular reconstruction is energetically favorable even at the methanol synthesis conditions. Therefore, we propose that, under methanol synthesis conditions, the motif Zn6O7H7 represents a stable form at the interface between the bulk-like part of ZnO and the Cu(111) surface in the ZnO/Cu/Al2O3 based commercial catalyst. � 2021 American Chemical SocietyItem Adsorption and activation of CO2 on a Au19Pt subnanometer cluster in aqueous environment(Elsevier B.V., 2022-04-15T00:00:00) Mondal, Krishnakanta; Megha; Banerjee, Arup; Fortunelli, AlessandroWe employ ab initio density functional theory based method to investigate the ability of a subnanometer bimetallic Au19Pt cluster to adsorb and activate a CO2 molecule in an aqueous electrochemical environment. We find that, in water, Au19Pt gets negatively charged at zero bias and selectively promotes the adsorption and activation of the CO2 molecule via electron transfer and through the hybridization of oxygen p-orbitals and partially filled platinum d-orbitals. Notably, Pt acts as a collector of negative charge and behaves as a CO2-activating single-atom catalyst embedded within a robust Au20-like framework, thus suggesting Au19Pt as a potential candidate for CO2 mitigation. � 2022 Elsevier B.V.Item Adsorption and Activation of CO2on Small-Sized Cu-Zr Bimetallic Clusters(American Chemical Society, 2021-03-17T00:00:00) Megha; Mondal, Krishnakanta; Ghanty, Tapan K.; Banerjee, ArupAdsorption and activation of CO2 is a key step in any chemical reaction, which aims to convert it to other useful chemicals. Therefore, it is important to understand the factors that drive the activation process and also search for materials that promote the process. We employ the density functional theory to explore the possibility of using small-sized bimetallic Cu-Zr clusters, Cu4-nZrn, with n = 1-3 for the above-mentioned key step. Our results suggest that after adsorption, a CO2 molecule preferably resides on Zr atoms or at the bridge and triangular faces formed by Zr atoms in bimetallic Cu-Zr clusters accompanied with its high degree of activation. Importantly, maximum activation occurs when CO2 is adsorbed on the CuZr3 cluster. Interestingly, we find that the adsorption energy of CO2 can be tuned by varying the extent of the Zr atom in Cu-Zr clusters. We rationalize the high adsorption of CO2 with the increase in the number of Zr atoms using the d-band center model and the concept of chemical hardness. The strong chemisorption and high activation of CO2 are ascribed to charge migration between Cu-Zr clusters and the CO2 molecule. We find an additional band in the infrared vibrational spectra of CO2 chemisorbed on all of the clusters, which is absent in the case of free CO2. We also observe that the energy barriers for the direct dissociation of the CO2 molecule to CO and O decrease significantly on bimetallic Cu-Zr clusters as compared to that on pure Cu4. In particular, the barrier heights are considerably small for Cu3Zr and CuZr3 clusters. This study demonstrates that Cu3Zr and CuZr3 clusters may serve as good candidates for activation and dissociation of the CO2 molecule. � 2021 American Chemical Society.Item Ag-S Type Quantum Dots versus Superatom Nanocatalyst: A Single Sulfur Atom Modulated Decarboxylative Radical Cascade Reaction(American Chemical Society, 2023-04-06T00:00:00) Meena, Sangeeta; Dastider, Saptarshi G.; Nishad, Chandra Shekhar; Jangid, Dilip Kumar; Kumar, Pankaj; Khirid, Samreet; Bose, Shubhankar Kumar; Mondal, Krishnakanta; Banerjee, Biplab; Dhayal, Rajendra S.The preparation of high-nuclearity silver nanoclusters in quantitative yield remains exclusive and their potential applications in the catalysis of organic reactions are still undeveloped. Here, we have synthesized a quantum dot (QD)-based catalyst, [Ag62S13(SBut)32](PF6)4 (denoted as Ag62S12-S) in excellent yield that enables the direct synthesis of pharmaceutically precious 3,4-dihydroquinolinone in 92% via a decarboxylative radical cascade reaction of cinnamamide with ?-oxocarboxylic acid under mild reaction conditions. In comparison, a superatom [Ag62S12(SBut)32](PF6)2 (denoted as Ag62S12) with identical surface anatomy and size, but without a central S2- atom in the core, gives an improved yield (95%) in a short time and exhibits higher reactivity. Multiple characterization techniques (single-crystal X-ray diffraction, nuclear magnetic resonance (1H and 31P), electrospray ionization mass spectrometry, energy dispersive X-ray spectroscopy, Brunauer-Emmett-Teller (BET), Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis) confirm the formation of Ag62S12-S. The BET results expose the total active surface area in supporting a single e- transfer reaction mechanism. Density functional theory reveals that leaving the central S atom of Ag62S12-S leads to higher charge transfer from Ag62S12 to the reactant, accelerates the decarboxylation process, and correlates the catalytic properties with the structure of the nanocatalyst. � 2023 American Chemical Society.Item Bio-assisted Synthesis of Au/Rh Nanostructure Electrocatalysts for Hydrogen Evolution and Methanol Oxidation Reactions: Composition Matters!(American Chemical Society, 2023-08-11T00:00:00) Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Ahmed, Imtiaz; Biswas, Sayani; Mondal, Krishnakanta; Haldar, Krishna KantaIn the field of catalysis, bimetallic nanostructures have attracted much interest. Here, we discuss the effect of Au/Rh bimetallic composition-tuned nanostructure and electrocatalytic activity. A simple bio-assisted technique was used to fabricate multiple Au:Rh nanoplate ratios (25:75, 50:50, and 75:25). XRD and XPS studies show that both Au and Rh phases coexist in a bimetallic nanostructure, and electron microscopy confirms the formation of a triangle-shaped nanoplate. Au0.25Rh0.75 exhibited the maximum catalytic activity and good stability for hydrogen evolution reaction (HER) with an overpotential of 105 mV at a current density of 10 mA/cm2. On the other hand, Au0.50Rh0.50 exhibits a higher activity for methanol oxidation reaction (MOR) compared to the other compositions. Theoretical studies indicate that the electrocatalytic enhancement obtained for both HER and MOR relies on electronic modification effects of the surface, with the overall reaction energy profile being optimized due to Au/Rh d-band mixing. � 2023 American Chemical Society.Item Dithiophosphonate Anchored Heterometallic (Ag(I)/Fe(II)) Molecular Catalysts for Electrochemical Hydrogen Evolution Reaction(American Chemical Society, 2022-08-12T00:00:00) Jangid, Dilip Kumar; Dastider, Saptarshi G.; Biswas, Rathindranath; Khirid, Samreet; Meena, Sangeeta; Kumar, Pankaj; Sahoo, Subash C.; Verma, Ved Prakash; Makde, Ravindra D.; Kumar, Ashwani; Jangir, Ravindra; Mondal, Krishnakanta; Haldar, Krishna Kanta; Dhayal, Rajendra S.The dichalcogenide ligated molecules in catalysis to produce molecular hydrogen through electroreduction of water are rarely explored. Here, a series of heterometallic [Ag4(S2PFc(OR)4] [where Fc = Fe(?5-C5H4)(?5-C5H5), R = Me, 1; Et, 2; nPr, 3; isoAmyl, 4] clusters were synthesized and characterized by IR, absorption spectroscopy, NMR (1H, 31P), and electrospray ionization mass spectrometry. The molecular structures of 1, 2, and 3 clusters were established by single-crystal X-ray crystallographic analysis. The structural elucidation shows that each triangular face of a tetrahedral silver(I) core is capped by a ferrocenyl dithiophosphonate ligand in a trimetallic triconnective (?3 ?2, ?1) pattern. A comparative electrocatalytic hydrogen evolution reaction of 1-5 (R = iPr, 5) was studied in order to demonstrate the potential of these clusters in water splitting activity. The experimental results reveal that catalytic performance decreases with increases in the length of the carbon chain and branching within the alkoxy (-OR) group of these clusters. Catalytic durability was found effective even after 8 h of a chronoamperometric stability test along with 1500 cycles of linear sweep voltammetry performance, and only 15 mV overpotential was increased at 5 mA/cm2 current density for cluster 1. A catalytic mechanism was proposed by applying density functional theory (DFT) on clusters 1 and 2 as a representative. Here, a ?1 coordinated S-site between Ag4 core and ligand was found a reaction center. The experimental results are also in good accordance with the DFT analysis. � 2022 American Chemical Society.Item Does Water Play a Crucial Role in the Growth of ZnO Nanoclusters in ZnO/Cu Catalyst?(American Chemical Society, 2023-05-04T00:00:00) Dastider, Saptarshi Ghosh; Panigrahi, Abhishek Ramachandra; Banerjee, Arup; Haldar, Krishna Kanta; Fortunelli, Alessandro; Mondal, KrishnakantaThe catalytically active configuration of ZnO/Cu in the commercial ZnO/Cu/Al2O3 catalyst for methanol synthesis from CO2 is still not clear. In this study, we employ density functional theory based methods to shed light on the structure and stoichiometry of ZnO clusters both free in the gas phase and also deposited on the Cu(111) surface under methanol synthesis conditions. Specifically, we investigate the structural evolution of ZnO clusters in the presence of hydrogen and water. We find that the stability of ZnO clusters increases with the concentration of water until the ratio of Zn and OH in the clusters reaches 1:2, with a morphological transition from planar to 3D configurations for clusters containing more than 4 Zn atoms. These clusters exhibit weak interaction with CO2, and water is predicted to block the active center. The Cu(111) surface plays an important role in enhancing the adsorption of CO2 on the ZnO/Cu(111) systems. We infer that ZnO nanostructures covered with OH species may be the morphology of the ZnO during the methanol synthesis from the hydrogenation of CO2 on the industrial catalyst. � 2023 American Chemical Society.Item Dumbbell-Shaped Ternary Transition-Metal (Cu, Ni, Co) Phosphate Bundles: A Promising Catalyst for the Oxygen Evolution Reaction(American Chemical Society, 2022-01-27T00:00:00) Singh, Harjinder; Biswas, Rathindranath; Ahmed, Imtiaz; Thakur, Pooja; Kundu, Avinava; Panigrahi, Abhishek Ramachandra; Banerjee, Biplab; Halder, Krishna Kamal; Lahtinen, Jouko; Mondal, Krishnakanta; Haldar, Krishna KantaDevelopment of economical and high-performance electrocatalysts for the oxygen evolution reaction (OER) is of tremendous interest for future applications as sustainable energy materials. Here, a unique member of efficient OER electrocatalysts has been developed based upon structurally versatile dumbbell-shaped ternary transition-metal (Cu, Ni, Co) phosphates with a three-dimensional (3D) (Cu2(OH)(PO4)/Ni3(PO4)2�8H2O/Co3(PO4)2�8H2O) (CNCP) structure. This structure is prepared using a simple aqueous stepwise addition of metal ion source approach. Various structural investigations demonstrate highly crystalline nature of the composite structure. Apart from the unique structural aspect, it is important that the CNCP composite structure has proved to be an excellent electrocatalyst for OER performance in comparison with its binary or constituent phosphate under alkaline and neutral conditions. Notably, the CNCP electrocatalyst displays a much lower overpotential of 224 mV at a current density of 10 mA cm-2 and a lower Tafel slope of 53 mV dec-1 with high stability in alkaline medium. In addition, X-ray photoelectron spectroscopy analysis suggested that the activity and long-term durability for the OER of the ternary 3D metal phosphate are due to the presence of electrochemically dynamic constituents such as Ni and Co and their resulting synergistic effects, which was further supported by theoretical studies. Theoretical calculations also reveal that the incredible OER execution was ascribed to the electron redistribution set off in the presence of Ni and Cu and the most favorable interaction between the *OOH intermediate and the active sites of CNCP. This work may attract the attention of researchers to construct efficient 3D ternary metal phosphate catalysts for various applications in the field of electrochemistry. � 2022 American Chemical Society.Item Gold�Hydrogen Analogy in Small�Sized Hydrogen�Doped Gold Clusters Revisited(John Wiley and Sons Inc, 2022-07-12T00:00:00) Megha; Mondal, Krishnakanta; Ghanty, Tapan K.; Banerjee, ArupThe analogy between gold and hydrogen is a subject of long-standing debate. In the present work, we examine the validity of the gold-hydrogen analogy in a series of small-sized H-doped gold clusters, Aun?1H with n varying between 2 and 10 and also investigate its dependence on the cluster size. Keeping in mind the importance of the role of structures, we make use of the genetic algorithm coupled with a density functional theory based method to exhaustively search and identify the energetically low-lying structures of each of the H-doped gold clusters. These lower energy structures of H-doped and pristine gold clusters are then employed to carry out the calculations of their electronic properties, stability analysis as well as their reactivity towards the adsorption and activation of CO and O2 molecules. Our study shows that in line with the gold-hydrogen analogy, both electronic properties and the adsorption/activation characteristics of H-doped gold clusters remain very similar to those of pristine gold clusters. � 2022 Wiley-VCH GmbH.Item Mechanism of Iron Integration into LiMn1.5Ni0.5O4for the Electrocatalytic Oxygen Evolution Reaction(American Chemical Society, 2022-09-14T00:00:00) Ahmed, Imtiaz; Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Singh, Harjinder; Mete, Shouvik; Patil, Ranjit A.; Saha, Monochura; Yadav, Ashok Kumar; Jha, Sambhu Nath; Mondal, Krishnakanta; Singh, Harishchandra; Ma, Yuan-Ron; Haldar, Krishna KantaSpinel-type LiMn1.5Ni0.5O4 has been paid temendrous consideration as an electrode material because of its low cost, high voltage, and stabilized electrochemical performance. Here, we demonstrate the mechanism of iron (Fe) integration into LiMn1.5Ni0.5O4 via solution methods followed by calcination at a high temparature, as an efficient electrocatalyst for water splitting. Various microscopic and structural characterizations of the crystal structure affirmed the integration of Fe into the LiMn1.5Ni0.5O4 lattice and the constitution of the cubic LiMn1.38Fe0.12Ni0.5O4 crystal. Local structure analysis around Fe by extended X-ray absorption fine structure (EXAFS) showed Fe3+ ions in a six-coordinated octahedral environment, demonstrating incorporation of Fe as a substitute at the Mn site in the LiMn1.5Ni0.5O4 host. EXAFS also confirmed that the perfectly ordered LiMn1.5Ni0.5O4 spinel structure becomes disturbed by the fractional cationic substitution and also stabilizes the LiMn1.5Ni0.5O4 structure with structural disorder of the Ni2+ and Mn4+ ions in the 16d octahedral sites by Fe2+ and Fe3+ ions. However, we have found that Mn3+ ion production from the redox reaction between Mn4+ and Fe2+ influences the electronic conductivity significantly, resulting in improved electrochemical oxygen evolution reaction (OER) activity for the LiMn1.38Fe0.12Ni0.5O4 structure. Surface-enhanced Fe in LiMn1.38Fe0.12Ni0.5O4 serves as the electrocatalytic active site for OER, which was verified by the density functional theory study. � 2022 American Chemical Society.Item Probing interaction of atherogenic lysophosphatidylcholine with functionalized graphene nanosheets: theoretical modelling and experimental validation(Springer Science and Business Media Deutschland GmbH, 2023-09-09T00:00:00) Panigrahi, Abhishek R.; Yadav, Pooja; Beura, Samir K.; Singh, Jyoti; Dastider, Saptarshi G.; Singh, Sunil K.; Mondal, KrishnakantaContext: The potential of graphene derivatives for theranostic applications depends on their compatibility with cellular and biomolecular components. Lysophosphatidylcholine (LPC), a lipid component present in oxidized low-density lipoproteins, microvesicles and free circulation in blood, plays a critical role in the pathophysiology of various diseases. Using�density functional theory-based methods, we systematically investigated the interaction of atherogenic LPC molecule with different derivatives of graphene, including pristine graphene, graphene with defect, N-doped graphene, amine-functionalized graphene, various graphene oxides and hydroxylated graphene oxides. We observed that the adsorption of LPC on graphene derivatives is highly selective based on the orientation of the functional groups of LPC interacting with the surface of the derivatives. Hydroxylated graphene oxide exhibited the strongest interaction with LPC with adsorption energy of ? 2.1 eV due to the interaction between the hydroxyl group on graphene and the phosphate group of LPC. The presence of aqueous medium further enhanced this interaction indicating favourable adsorption of LPC and graphene oxide in biological systems. Such strong interaction leads to substantial change in the electronic structure of the LPC molecule, which results in the activation of this molecule. In contrast, amine-modified graphene showed the least interaction. These theoretical results are in line with our experimental fluorescence spectroscopic data of LPC/1-anilino-8-napthalene sulfonic acid complex. Our present comprehensive investigation employing both theoretical and experimental methods provides a deeper understanding of graphene-lipid interaction, which holds paramount importance in the design and fabrication of graphene-based nanomaterials for biomedical applications. Methods: In this study, we employed the density functional theory-based methods to investigate the electronic and structural properties of graphene derivatives and LPC molecule using the Quantum Espresso package. The exchange�correlation functional was described within generalized gradient approximation (GGA) as parameterized by Perdew, Burke and Ernzerhof (PBE). The valence electrons were represented using plane wave basis sets. `The Grimme�s dispersion method was used to include the van der Waals dispersion correction. � 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Item Theoretical investigation of quantum capacitance of Co-doped ?-MnO2 for supercapacitor applications using density functional theory(Royal Society of Chemistry, 2023-09-07T00:00:00) Vijayan, Ariya K.; Sreehari, M.S.; Kour, Simran; Dastider, Saptarshi Ghosh; Mondal, Krishnakanta; Sharma, A.L.The rapid depletion of fossil fuels and ever-growing energy demand have led to a search for renewable clean energy sources. The storage of renewable energy calls for immediate attention to the fabrication of efficient energy storage devices like supercapacitors (SCs). As an electrode material for SCs, MnO2 has gained wide research interest because of its high theoretical capacitance, variable oxidation state, vast abundance, and low cost. However, the low electric conductivity of MnO2 limits its practical application. The conductivity of MnO2 can be enhanced by tuning the electronic states through substitution doping with cobalt. In the present work, first principles analysis based on density functional theory (DFT) has been used to examine the quantum capacitance (CQC) and surface charge (Q) of Co-doped MnO2. Doping enhanced the structural stability, electrical conductivity, potential window, and quantum capacitance of ?-MnO2. The shortened band gap and localized states near the Fermi level improve the CQC of ?-MnO2. For the narrow potential range (?0.4 to 0.4 V), the CQC is observed to increase with doping concentration. The highest CQC value at +0.4 V is observed to be 2412.59 ?F cm?2 for Mn6Co2O16 (25% doping), five times higher than that of pristine MnO2 (471.18 ?F cm?2). Mn6Co2O16 also exhibits better CQC and �Q� at higher positive bias. Hence, it can be used as an anode material for asymmetric supercapacitors. All these results suggest better capacitive performance of Co-doped ?-MnO2 for aqueous SCs and as an anode material for asymmetric supercapacitors. � 2023 The Royal Society of Chemistry.Item Topological Insulators: An In-Depth Review of Their Use in Modelocked Fiber Lasers(John Wiley and Sons Inc, 2021-05-03T00:00:00) Mondal, Shyamal; Ganguly, Rounak; Mondal, KrishnakantaTopological insulators (TIs) exhibit exciting optical properties, which open up a new pathway to generate ultrashort pulses from fiber lasers. Layered TIs display distinct saturable absorption properties due to excited state absorption, as compared to their bulk structures. Moreover, the electronic structures of the TI films depend on the thickness of the films due to the quantum confinement of the electrons. By virtue of this, TI nanoparticles play a key role in all-fiber modelocked lasers. By tweaking the crystal structures of TIs, it is possible to generate ultrashort pulses across the visible, near-infrared, and mid-infrared wavelengths. Starting from the crystal structures and density of states calculations, how different topological insulators can be fabricated and integrated as an efficient passive saturable absorber in all-fiber modelocked lasers with the capability of producing fundamental to high-harmonic pulse generation are described clearly in this review report. Moreover, this report reviews the current state-of-art of TI-based saturable absorbers and their applications in different regimes of modelocked fiber�lasers. � 2021 Wiley-VCH GmbHItem Unraveling the Role of Orbital Interaction in the Electrochemical HER of the Trimetallic AgAuCu Nanobowl Catalyst(American Chemical Society, 2023-03-24T00:00:00) Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Ahmed, Imtiaz; Barua, Sourabh; Mondal, Krishnakanta; Haldar, Krishna KantaUnraveling the origins of the electrocatalytic activity of composite nanomaterials is crucial but inherently challenging. Here, we present a comprehensive investigation of the influence of different orbitals� interaction in the AuAgCu nanobowl model electrocatalyst during the hydrogen evolution reaction (HER). According to our theoretical study, AgAuCu exhibits a lower energy barrier than AgAu and AgCu bimetallic systems for the HER, suggesting that the trimetallic AgAuCu system interacts optimally with H*, resulting in the most efficient HER catalyst. As we delve deeper into the HER activity of AgAuCu, it was observed that the presence of Cu allows Au to adsorb the H* intermediate through the hybridization of s orbitals of hydrogen and s, dx2-y2, and dz2 orbitals of Au. Such orbital interaction was not present in the cases of AgAu and AgCu bimetallic systems, and as a result, these bimetallic systems exhibit lower HER activities. � 2023 American Chemical Society.