Browsing by Author "Mundkar, Maroti"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Involvement of the G-Protein-Coupled Estrogen Receptor-1 (GPER) Signaling Pathway in Neurodegenerative Disorders: A Review(Springer, 2022-10-28T00:00:00) Upadhayay, Shubham; Gupta, Rishav; Singh, Surbhi; Mundkar, Maroti; Singh, Gursewak; Kumar, PuneetThe G-protein-coupled estrogen receptor-1 (GPER) is an extranuclear estrogen receptor that regulates the expression of several downstream signaling pathways with a variety of biological actions including cell migration, proliferation, and apoptosis in different parts of the brain area. It is endogenously activated by estrogen, a steroidal hormone that binds to GPER receptors which help in maintaining cellular homeostasis and neuronal integrity as well as influences neurogenesis. In contrast, neurodegenerative disorders are a big problem for society, and still many people suffer from motor and cognitive impairments. Research to date reported that GPER has the potential to whittle down motor abnormalities and cognitive dysfunction by limiting the progression of neurodegenerative disorders. Although several findings suggest that GPER activation accelerated transcription of the PI3K/Akt/Gsk-3? and ERK1/2 signaling pathway that halt disease progression by decreasing oxidative stress, neuroinflammation, and apoptosis. Accordingly, the goal of this review is to highlight the basic mechanism of GPER signaling pathway-mediated neuroprotection in various neurodegenerative disorders including Parkinson�s disease (PD), Huntington�s disease (HD), Tardive dyskinesia (TD), and Epilepsy. This review also discusses the role of the GPER activators which might be a promising therapeutic target option to treat neurodegenerative disorders. All the data were obtained from published articles in PubMed (353), Web of Science (788), and Scopus (770) databases using the search terms: GPER, PD, HD, TD, epilepsy, and neurodegenerative disorders. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Neuroprotective potential of Moringa oleifera mediated by NF-kB/Nrf2/HO-1 signaling pathway: A review(John Wiley and Sons Inc, 2022-10-07T00:00:00) Mundkar, Maroti; Bijalwan, Anjali; Soni, Divya; Kumar, PuneetMoringa oleifera is a traditional Indian herb belonging to the Moringaceae family, it is commonly known as the horse-radish tree, drumstick, or sahajna. In developing countries, Moringa is used as feed for both humans and animals due to its well-known antioxidant, anti-inflammatory, and anti-apoptotic properties owing to its several phytoconstituents including ?-carotene, quercetin, kaempferol, ascorbic acid, flavonoids, phenolic acid, rhamnose, glycosylates, glucomoringin, and isothiocyanates. These constituents help to maintain the brain antioxidant enzyme levels, mitochondrial functions, and neurogenesis, showing neuroprotective effects in several neurodegenerative disorders including Parkinson's Disease, Alzheimer's Disease, Huntington's Disease, and Amyotrophic lateral sclerosis. This review discusses various phytoconstituent of moringa and their therapeutic potential in various neurological disorders. Additionally, we also concise the safety and toxicity profile, of different molecular pathways involved in the neuroprotective effect of M. oleifera including M. oleifera nanoparticles for better therapeutic value. Practical applications: Several clinical and preclinical studies on Moringa oleifera have been conducted, and the outcomes indicate moringa could be used in the treatment of brain disorders. As a result, we conclude that moringa and its nanoformulations could be employed to treat neurological problems. In the future, M. oleifera phytoconstituents could be evaluated against specific signaling pathways, which could aid researchers in discovering their mechanism of action. Furthermore, the use of moringa as a nutraceutical owing to its myriad pharmacological potential will go a long way in boosting the economy of countries that grow moringa on a large scale. � 2022 Wiley Periodicals LLC.