Browsing by Author "Niraula, Gopal"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item The Curie temperature: a key playmaker in self-regulated temperature hyperthermia(Royal Society of Chemistry, 2023-11-13T00:00:00) Niraula, Gopal; Wu, Chengwei; Yu, Xiaogang; Malik, Sonia; Verma, Dalip Singh; Yang, Rengpeng; Zhao, Boxiong; Ding, Shuaiwen; Zhang, Wei; Sharma, Surender KumarThe Curie temperature is an important thermo-characteristic of magnetic materials, which causes a phase transition from ferromagnetic to paramagnetic by changing the spontaneous re-arrangement of their spins (intrinsic magnetic mechanism) due to an increase in temperature. The self-control-temperature (SCT) leads to the conversion of ferro/ferrimagnetic materials to paramagnetic materials, which can extend the temperature-based applications of these materials from industrial nanotechnology to the biomedical field. In this case, magnetic induction hyperthermia (MIH) with self-control-temperature has been proposed as a physical thermo-therapeutic method for killing cancer tumors in a biologically safe environment. Specifically, the thermal source of MIH is magnetic nanoparticles (MNPs), and thus their biocompatibility and Curie temperature are two important properties, where the former is required for their clinical application, while the latter acts as a switch to automatically control the temperature of MIH. In this review, we focus on the Curie temperature of magnetic materials and provide a complete overview beginning with basic magnetism and its inevitable relation with Curie's law, theoretical prediction and experimental measurement of the Curie temperature. Furthermore, we discuss the significance, evolution from different types of alloys to ferrites and impact of the shape, size, and concentration of particles on the Curie temperature considering the proposed SCT-based MIH together with their biocompatibility. Also, we highlight the thermal efficiency of MNPs in destroying tumor cells and the significance of a low Curie temperature. Finally, the challenges, concluding remarks, and future perspectives in promoting self-control-temperature based MIH to clinical application are discussed. � 2023 The Royal Society of Chemistry.Item Energy Evolution, Stabilization, and Mechanotransducer Properties of Fe3 O4 Vortex Nanorings and Nanodisks(American Physical Society, 2021-08-02T00:00:00) Niraula, Gopal; Toneto, Denilson; Joshy, Elma; Coaquira, Jose A. H.; Ayesh, Ahmad I.; Garcia, Flavio; Muraca, Diego; Denardin, Juliano C.; Goya, Gerardo F.; Sharma, Surender K.Recent reports on spin structures produced in nanomaterials due to confinement of spins imposed by geometrical restrictions are at the center of rising scientific interest. Topological curling magnetic structures (vortices) exhibit unique properties, regarding the energy profile, good colloidal stability in suspensions, manipulation under a low-frequency magnetic field, and torque exertion. The last property provides the potential to mechanically eradicate cancer cells via magnetomechanical actuation using remote ac magnetic fields. Here, we study, theoretically and by micromagnetic simulations, the magnetic energy evolutions for vortex nanosystems, i.e., Fe3O4 nanodisks (NDs) and nanorings (NRs). The obtained results for magnetic energy, magnetic susceptibility, and magnetization reversal confirm that the vortex-domain structure in NRs exhibits better stability and avoids agglomeration in solution, owing to the presence of a central hole, whereas the presence of a vortex core in NDs induces magnetic remanence. Although NDs are found to exert slightly higher torques than NRs, this weakness can be compensated for by a small increase (i.e., approximately equals 20%) in the amplitude of the applied field. Our results provide evidence of the magnetic stability of the curling ground states in NRs and open the possibility of applying these systems to magnetomechanical actuation on single cells for therapeutics in biomedicine, such as cancer-cell destruction by low-frequency torque transduction. � 2021 American Physical Society.Item Engineering Shape Anisotropy of Fe3O4-?-Fe2O3Hollow Nanoparticles for Magnetic Hyperthermia(American Chemical Society, 2021-02-24T00:00:00) Niraula, Gopal; Coaquira, Jose A. H.; Zoppellaro, Giorgio; Villar, Bianca M. G.; Garcia, Flavio; Bakuzis, Andris F.; Longo, Jo�o P. F.; Rodrigues, Mosar C.; Muraca, Diego; Ayesh, Ahmad I.; Sinfr�nio, Francisco S�vio M.; De Menezes, Alan S.; Goya, Gerardo F.; Sharma, Surender K.The use of microwave-assisted synthesis (in water) of ?-Fe2O3 nanomaterials followed by their transformation onto iron oxide Fe3O4-?-Fe2O3 hollow nanoparticles encoding well-defined sizes and shapes [nanorings (NRs) and nanotubes (NTs)] is henceforth described. The impact of experimental variables such as concentration of reactants, volume of solvent employed, and reaction times/temperatures during the shape-controlled synthesis revealed that the key factor that gated generation of morphologically diverse nanoparticles was associated to the initial concentration of phosphate anions employed in the reactant mixture. All the nanomaterials presented were fully characterized by powder X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, M�ssbauer spectroscopy, and superconducting quantum interference device (SQUID). The hollow nanoparticles that expressed the most promising magnetic responses, NTs and NRs, were further tested in terms of efficiencies in controlling the magnetic hyperthermia, in view of their possible use for biomedical applications, supported by their excellent viability as screened by in vitro cytotoxicity tests. These systems NTs and NRs expressed very good magneto-hyperthermia properties, results that were further validated by micromagnetic simulations. The observed specific absorption rate (SAR) and intrinsic loss power of the NRs and NTs peaked the values of 340 W/g and 2.45 nH m2 kg-1 (NRs) and 465 W/g and 3.3 nH m2 kg-1 (NTs), respectively, at the maximum clinical field 450 Oe and under a frequency of 107 kHz and are the highest values among those reported so far in the hollow iron-oxide family. The higher SAR in NTs accounts the importance of magnetic shape anisotropy, which is well-predicted by the modified dynamic hysteresis (?-MDH) theoretical model. �Item Ferrites as an Alternative Source of Renewable Energy for Hydroelectric Cell(Springer Science and Business Media Deutschland GmbH, 2021-10-29T00:00:00) Mathpal, Mohan Chandra; Niraula, Gopal; Kumar, Promod; Chand, Mahesh; Singh, Manish Kumar; Sharma, Surender K.; Soler, Maria A. G.; Swart, H.C.There are many conventional ways of producing energy at large scales such as fossil fuels, hydroelectric power station, wind energy, solar cell plants, marine energy, etc., but most of these require bulky plantation, huge manpower, wide land occupation and are non-portable and expensive to handle too. In the twenty-first century, there is still a huge gap between worldwide energy supply and its demand. The advances in the technology sector have also increased the consumption of energy, but the sources of generating the renewable energy remain limited. In order to account for these problems in recent years, several methods have been adopted and a significant research in this direction has been made by the invention of the hydroelectric cell by Dr. R. K. Kotnala�s group in 2016. Instead of using the magnetic character in the ferrite nanostructures, these nanomaterials were first time effectively exploited for direct energy harvesting application by using their capability to dissociate the absorbed water molecules on its porous surface. This allows the production of ions, which is then followed by the charge transfer of hydronium, hydroxyl and hydrogen ions between the electrodes of the ferrite nanostructures and results in the generation of an electric current across the circuit. The concept of the hydroelectric cell is new, and these cells are easily portable, inexpensive, biodegradable and eco-friendly in nature. This chapter provides an insight on the concept of spinel ferrite nanostructures for the application in the hydroelectric cell. � 2021, Springer Nature Switzerland AG.Item Magnetic Nanoflowers: Synthesis, Formation Mechanism and Hyperthermia Application(Springer Science and Business Media Deutschland GmbH, 2021-10-29T00:00:00) Niraula, Gopal; Mathpal, Mohan Chandra; Herrera, Edher Z.; Soler, Maria A. G.; Coaquira, Jose A. H.; Sharma, Surender K.Magnetic hyperthermia is becoming a very propitious supplementary technique for cancer treatments such as chemotherapy radiotherapy and radiotherapy. In this regard, magnetic nanoflowers (MNFs) are novel system in terms of morphology showing a structure similar to flower and exhibiting higher stability and enhanced heating efficiency when compared with similar nanoparticles displaying standard formats; enabling them for magneto-hyperthermia applications. In this chapter, different types of nanoflowers such as magnetic-oxide, magneto-plasmonic, and magnetic-organic/inorganic and their applicability are discussed. Moreover, a discussion on the most common chemical routes to design nanoflowers emphasizing hydro/solvothermal techniques, microwave-assisted hydrothermal, co-precipitations, and polyol are highlighted. Furthermore, the nucleation of MNFs and their growing process with a physical parameter are presented. At last, the magnetic hyperthermia properties of MNFs and their recent findings are critically scrutinized along with their future perspectives in biomedicine. � 2021, Springer Nature Switzerland AG.Item Observation of magnetic vortex configuration in non-stoichiometric Fe3O4 nanospheres(Royal Society of Chemistry, 2023-08-31T00:00:00) Niraula, Gopal; Toneto, Denilson; Goya, Gerardo F.; Zoppellaro, Giorgio; Coaquira, Jose A. H.; Muraca, Diego; Denardin, Juliano C.; Almeida, Trevor P.; Knobel, Marcelo; Ayesh, Ahmad I.; Sharma, Surender K.Theoretical and micromagnetic simulation studies of magnetic nanospheres with vortex configurations suggest that such nanostructured materials have technological advantages over conventional nanosystems for applications based on high-power-rate absorption and subsequent emission. However, full experimental evidence of magnetic vortex configurations in spheres of submicrometer size is still lacking. Here, we report the microwave irradiation fabrication of Fe3O4 nanospheres and establish their magnetic vortex configuration based on experimental results, theoretical analysis, and micromagnetic simulations. Detailed magnetic and electrical measurements, together with M�ssbauer spectroscopy data, provide evidence of a loss of stoichiometry in vortex nanospheres owing to the presence of a surface oxide layer, defects, and a higher concentration of cation vacancies. The results indicate that the magnetic vortex spin configuration can be established in bulk spherical magnetite materials. This study provides crucial information that can aid the synthesis of magnetic nanospheres with magnetically tailored properties; consequently, they may be promising candidates for future technological applications based on three-dimensional magnetic vortex structures. � 2023 RSC.Item State of Art of Spinel Ferrites Enabled Humidity Sensors(Springer Science and Business Media Deutschland GmbH, 2021-10-29T00:00:00) Mathpal, Mohan Chandra; Niraula, Gopal; Chand, Mahesh; Kumar, Promod; Singh, Manish Kumar; Sharma, Surender K.; Soler, Maria A. G.; Swart, H.C.Controlling the moisture level in air and gases is an important aspect in defense, weather station, industry, laboratory and healthcare systems. The accurate measurement and sensing of the humidity/moisture level in the surrounding environment can help to maintain the temperature level for ideal living conditions; from a safety point of view, it can help to prevent the virus/disease transmission; importantly, it can protect expensive equipment, electronic devices and optical devices against damage which are sensitive to high humidity in the atmosphere. The controlled monitoring, regulation and management of humidity necessarily require humidity sensors with high sensitivity, high stability and low response time. Currently, there are various types of humidity sensors available in the market, but there are always limitations on the practical applications as the main problems are associated with their eco-friendly nature, cost, sensitivity, response time (rapid action) and lifetime. Aiming to address these issues, the spinel ferrite nanostructures arise as promising nanomaterials due to their moderate semiconducting features with high resistance, porous nature and high surface activities enabling easy fabrication of the humidity sensors. This chapter provides an overview of the role of spinel ferrite nanostructures for their applications in humidity sensors. � 2021, Springer Nature Switzerland AG.Item Stoichiometry and Orientation- And Shape-Mediated Switching Field Enhancement of the Heating Properties of Fe3 O4 Circular Nanodiscs(American Physical Society, 2021-01-28T00:00:00) Niraula, Gopal; Coaquira, Jose A. H.; Aragon, Fermin H.; Bakuzis, Andris F.; Villar, Bianca M. G.; Garcia, Flavio; Muraca, Diego; Zoppellaro, Giorgio; Ayesh, Ahmad I.; Sharma, Surender K.The generation of topological magnetic vortex-domain structures in iron-oxide nanomaterials has promising applications in biomedical scenarios, such as heat generators for hyperthermia treatments. In this report we describe alternative kinds of magnetic-vortex nanoparticles, circular Fe3O4 nanodiscs (NDs), and dissect their heating properties by in-depth investigation of their shape and size, stoichiometry, orientations, and switching field "HS"behaviors, through experiments and theoretical simulation. We find that the stoichiometric NDs show better heating performance than nonstoichiometric materials because of the significant electron hopping between Fe3+ and Fe2+ ion. The higher heating efficiency (in terms of specific absorption rate, SAR) is observed only for the higher switching field regime, an effect that is associated with the parallel and perpendicular alignment of nanodiscs with respect to low and high ac magnetic field, respectively. A higher SAR of approximately 270 W/g is observed at a higher switching field (approximately 700 Oe) for NDs of diameter 770 nm, which increases by a factor of 4 at a switching field of approximately 360 Oe for NDs of diameter 200 nm. The reported results suggest that the heating efficiency in these systems can be enhanced by controlling the switching field, which is, in turn, tuned by size, shape, and orientation of circular magnetic vortex nanodiscs. � 2021 American Physical Society.Item Superparamagnetic Iron Oxide-Based Nanomaterials for Magnetic Resonance Imaging(Springer Science and Business Media Deutschland GmbH, 2021-10-29T00:00:00) Niraula, Gopal; Mathpal, Mohan Chandra; Medrano, Jason J. A.; Singh, Manish Kumar; Coaquira, Jose A. H.; Verma, Ramesh; Sharma, Surender K.Magnetic resonance imaging (MRI) is the technique for the visualization of targeted macromolecules or cells in biological system. Nowadays, superparamagnetic iron oxide nanoparticles (SPIONs) have been attracted and remarkably emerging as a negative contrast agent (T2-weighted) offering sufficient detection sensitivity as compared to positive contrast agent (T1-weighted). In the present chapter, we first introduce the necessary background of superparamagnetic iron oxide-based nanoparticles and MRI taking into an account to discuss both T1�T2-weighted imaging. The liquid-based synthesis methods of SPIONs and their applicability in MRI have been thoroughly revised. Finally, several nanohybrids such as magnetic-silica, magneto-luminescent, magneto-plasmonic along with ferrite-based SPIONs are thoroughly presented in light of MRI application. � 2021, Springer Nature Switzerland AG.Item Tuning the shape, size, phase composition and stoichiometry of iron oxide nanoparticles: The role of phosphate anions(Elsevier Ltd, 2020-09-17T00:00:00) Niraula, Gopal; Coaquira, Jose A.H.; Aragon, Fermin H.; Galeano Villar, Bianca M.; Mello, Alexandre; Garcia, Flavio; Muraca, Diego; Zoppellaro, Giorgio; Vargas, Jose M.; Sharma, Surender K.This work describes a microwave synthetic approach for the controlled assembly of ?-Fe2O3 nanosystems with defined morphologies, such as hollow nanotubes (NTs), solid nanorods (NRs) and nanodisks (NDs). The morphological control is aided during the crystallization processes by using phosphate anions as key surfactants in solution. Furthermore, the thermal reduction under H2 atmosphere of these NTs, NRs and NDs ?-Fe2O3 systems to the correspondent Fe3O4 nanomaterials preserved their initial morphologies. It was observed that the concentration of phosphate anions and volume of solvent had significant impact not only on controlling the shapes and sizes, but also phase composition and stoichiometry of the NTs, NRs and NDs nanoparticles. X-ray Rietveld refinement analysis of the NTs, NRs and NDs systems, after reduction in H2, revealed the presence of zero-valent iron (Fe0) in the final materials, with Fe0 fractions that decreased gradually in % from NTs (?16%), NRs (?11%) to NDs (?0%) upon increasing amount of phosphate anions. Bulk magnetic susceptibility measurements showed clear alterations of the Verwey transition temperatures (TV) and the development of unusual magnetic phenomena, such as magnetic vortex states in NDs, which was subsequently verified by micro-magnetic simulations. From the combination of XRD analysis, bulk magnetic susceptibility and M�ssbauer results, we provide herein a detailed mechanistic description of the chemical processes that gated the development of shape-controlled synthesis of NTs, NRs and NDs and give a detailed correlation between specific morphology and magneto-electronic behaviors. � 2020 Elsevier B.V.