Browsing by Author "Nishad, Chandra Shekhar"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Ag-S Type Quantum Dots versus Superatom Nanocatalyst: A Single Sulfur Atom Modulated Decarboxylative Radical Cascade Reaction(American Chemical Society, 2023-04-06T00:00:00) Meena, Sangeeta; Dastider, Saptarshi G.; Nishad, Chandra Shekhar; Jangid, Dilip Kumar; Kumar, Pankaj; Khirid, Samreet; Bose, Shubhankar Kumar; Mondal, Krishnakanta; Banerjee, Biplab; Dhayal, Rajendra S.The preparation of high-nuclearity silver nanoclusters in quantitative yield remains exclusive and their potential applications in the catalysis of organic reactions are still undeveloped. Here, we have synthesized a quantum dot (QD)-based catalyst, [Ag62S13(SBut)32](PF6)4 (denoted as Ag62S12-S) in excellent yield that enables the direct synthesis of pharmaceutically precious 3,4-dihydroquinolinone in 92% via a decarboxylative radical cascade reaction of cinnamamide with ?-oxocarboxylic acid under mild reaction conditions. In comparison, a superatom [Ag62S12(SBut)32](PF6)2 (denoted as Ag62S12) with identical surface anatomy and size, but without a central S2- atom in the core, gives an improved yield (95%) in a short time and exhibits higher reactivity. Multiple characterization techniques (single-crystal X-ray diffraction, nuclear magnetic resonance (1H and 31P), electrospray ionization mass spectrometry, energy dispersive X-ray spectroscopy, Brunauer-Emmett-Teller (BET), Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis) confirm the formation of Ag62S12-S. The BET results expose the total active surface area in supporting a single e- transfer reaction mechanism. Density functional theory reveals that leaving the central S atom of Ag62S12-S leads to higher charge transfer from Ag62S12 to the reactant, accelerates the decarboxylation process, and correlates the catalytic properties with the structure of the nanocatalyst. � 2023 American Chemical Society.Item Metal-Free Direct Access to N-Sulfonyl Amidines from Sulfonamides and Secondary Amines Involving Tandem C-N Bond Formations(American Chemical Society, 2022-08-17T00:00:00) Nishad, Chandra Shekhar; Haldar, Krishna Kanta; Banerjee, BiplabWe report a mild and efficient metal-free one-pot procedure for the synthesis of N-sulfonyl amidines via the direct reaction of sulfonamides with secondary amines without using any additives. A wide range of substrates with variety of functional groups is well tolerated under the reaction conditions. Preliminary mechanistic studies indicate that the secondary amine plays a dual role as a C1 source of the amidine group and an aminating agent. Synthetic utility of this method is shown in the late-stage functionalization of drug molecules on the gram scale. � 2022 American Chemical Society.Item Visible-Light-Induced Metal- and Photocatalyst-Free Radical Cascade Cyclization of Cinnamamides for Synthesis of Functionalized Dihydroquinolinones(American Chemical Society, 2023-07-18T00:00:00) Nishad, Chandra Shekhar; Suman, Pallav; Saha, Himadri; Banerjee, BiplabVisible-light-promoted metal- and photocatalyst-free radical cascade cyclization of cinnamamides with ?-oxocarboxylic acids is described for sustainable synthesis of diverse pharmaceutically important dihydroquinolinone scaffolds in one pot under mild conditions. The decarboxylative cascade cyclization proceeded efficiently at room temperature without the need for expensive photocatalysts such as Ir or Ru complexes, which indicates the practicability and environmentally benign nature of this protocol. Preliminary mechanistic studies reveal that the blue LED irradiation efficiently cleaves the I-O bond of the hypervalent iodine reagent PhI(O2CCOAr)2 formed through ligand exchange between iodobenzene diacetate and arylglyoxylic acid to initiate the cascade reaction. The synthetic value of this operationally simple and energy-efficient method is further demonstrated by late-stage functionalization of drug molecules in excellent yields. � 2023 American Chemical Society.