Browsing by Author "Pandey, Ravindra"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Electronic and optical properties of boron-based hybrid monolayers(IOP Publishing Ltd, 2021-06-24T00:00:00) Katoch, Neha; Kumar, Ashok; Kumar, Jagdish; Ahluwalia, P.K.; Pandey, RavindraAnisotropic 2D Dirac cone materials are important for the fabrication of nanodevices having direction-dependent characteristics since the anisotropic Dirac cones lead to different values of Fermi velocities yielding variable carrier concentrations. In this work, the feasibility of the B-based hybrid monolayers BX (X = As, Sb, and Bi), as anisotropic Dirac cone materials is investigated. Calculations based on density functional theory and molecular dynamics method find the stability of these monolayers exhibiting unique electronic properties. For example, the BAs monolayer possesses a robust self-doping feature, whereas the BSb monolayer carries the intrinsic charge carrier concentration of the order of 1012 cm?2 which is comparable to that of graphene. Moreover, the direction-dependent optical response is predicted in these B-based monolayers; a high IR response in the x-direction is accompanied with that in the visible region along the y-direction. The results are, therefore, expected to help in realizing the B-based devices for nanoscale applications. � 2021 IOP Publishing Ltd Printed in the UKItem Energetics and Electronic Properties of Pt Wires of Different Topologies on Monolayer MoSe 2(AIP Publishing, 2016) Jamdagni, Pooja; Kumar, Ashok; Thakur, Anil; Pandey, Ravindra; Ahluwalia, P. K.The energetics and electronic properties of different of Pt wires including linear, zigzag and ladder structures on MoSe2 have been investigated in the framework of The predicted order of stability of Pt wire on MoSe2 is found to be: linear > ladder > zigzag. Pt wires induce states near the of MoSe2 that results into metallic characteristics of Pt-wire/MoSe2 assembled system. signifies most of the contribution from Pt atoms near the Fermi energy of assembled wire/MoSe2 system. These findings are expected to be important for the of based on MoSe2 layers for flexible nanoelectronics.Item Engineering 2D Materials for Photocatalytic Water-Splitting from a Theoretical Perspective(MDPI, 2022-03-21T00:00:00) Jakhar, Mukesh; Kumar, Ashok; Ahluwalia, Pradeep K.; Tankeshwar, Kumar; Pandey, RavindraSplitting of water with the help of photocatalysts has gained a strong interest in the scientific community for producing clean energy, thus requiring novel semiconductor materials to achieve highyield hydrogen production. The emergence of 2D nanoscale materials with remarkable electronic and optical properties has received much attention in this field. Owing to the recent developments in highend computation and advanced electronic structure theories, first principles studies offer powerful tools to screen photocatalytic systems reliably and efficiently. This review is organized to highlight the essential properties of 2D photocatalysts and the recent advances in the theoretical engineering of 2D materials for the improvement in photocatalytic overall water-splitting. The advancement in the strategies including (i) single-atom catalysts, (ii) defect engineering, (iii) strain engineering, (iv) Janus structures, (v) type-II heterostructures (vi) Z-scheme heterostructures (vii) multilayer configurations (viii) edge-modification in nanoribbons and (ix) the effect of pH in overall watersplitting are summarized to improve the existing problems for a photocatalytic catalytic reaction such as overcoming large overpotential to trigger the water-splitting reactions without using cocatalysts. This review could serve as a bridge between theoretical and experimental research on next-generation 2D photocatalysts. � 2022 by the authors. Licensee MDPI, Basel, Switzerland.Item Monolayer, Bilayer, and Heterostructures of Green Phosphorene for Water Splitting and Photovoltaics(American Chemical Society, 2018) Kaur, Sumandeep; Kumar, Ashok; Srivastava, Sunita; Tankeshwar, K.; Pandey, RavindraWe report the results of density functional theory-based calculations on monolayer and bilayer green phosphorene and their heterostructures with MoSe 2 . Both monolayer and bilayer green phosphorene are direct band gap semiconductors and possess anisotropic carrier mobility as high as 10 4 cm 2 /V/s. In bilayers, the pressure of about 9 GPa induces the semiconductor-metal transition. Moreover, the band gap depends strongly on the thickness of the films and the external electric field. By employing strain engineering under suitable solution conditions, monolayer and AC-stacked bilayer green phosphorene offer the band edge alignments which can be used for water splitting. The upper limit of the power conversion efficiencies for monolayer and AB- and AC-stacked bilayer green phosphorene heterostructures with MoSe 2 is calculated to be 18-21%. Our results show the possibility of green phosphorene to be used as a photocatalytic and photovoltaic material in energy-related applications. - 2018 American Chemical Society.Item Optoelectronic and photocatalytic properties of stable pentagonal B2S and B2Se monolayers(Elsevier B.V., 2022-06-01T00:00:00) Katoch, Neha; Kumar, Jagdish; Kumar, Ashok; Ahluwalia, P.K.; Pandey, RavindraBoron-based 2D monolayers have attracted tremendous interest due to their unique physical and chemical properties. In this paper, we report novel pentagonal monolayers, B2S and B2Se, which are predicted to be energetically, dynamically, and thermally stable based on density functional theory. At the HSE06 level of theory, they exhibit a moderate indirect bandgap of (e.g., 1.82 eV for Penta-B2S and 1.94 eV for Penta-B2Se). Strain-induced indirect-to-direct bandgap transition, high hole mobility (~103 Cm2V-1S-1) and strong optical absorption (? ~105 Cm-1) in the visible region are observed for these monolayers. Moreover, the electronic band structures and optical spectra are tunable by mechanical strains suggesting their visible light-harvesting capabilities for optoelectronic applications. In this way, the pentagonal family of 2D materials is now expanded to include boron-containing photocatalytic materials for water splitting applications. � 2022Item Photocatalytic properties of anisotropic ?-PtX2 (X = S, Se) and Janus ?-PtSSe monolayers(Royal Society of Chemistry, 2022-09-01T00:00:00) Jamdagni, Pooja; Kumar, Ashok; Srivastava, Sunita; Pandey, Ravindra; Tankeshwar, K.The highly efficient photocatalytic water splitting process to produce clean energy requires novel semiconductor materials to achieve a high solar-to-hydrogen energy conversion efficiency. Herein, the photocatalytic properties of anisotropic ?-PtX2 (X = S, Se) and Janus ?-PtSSe monolayers were investigated based on the density functional theory. The small cleavage energy for ?-PtS2 (0.44 J m?2) and ?-PtSe2 (0.40 J m?2) endorses the possibility of mechanical exfoliation from their respective layered bulk materials. The calculated results revealed that the ?-PtX2 monolayers have an appropriate bandgap (?1.8-2.6 eV) enclosing the water redox potential, light absorption coefficient (?104 cm?1), and exciton binding energy (?0.5-0.7 eV), which facilitates excellent visible-light-driven photocatalytic performance. Remarkably, the inherent structural anisotropy leads to an anisotropic high carrier mobility (up to ?5 � 103 cm2 V?1 S?1), leading to a fast transport of photogenerated carriers. Notably, the required small external potential to realize hydrogen evolution reaction and oxygen evolution reaction processes with an excellent solar-to-hydrogen energy conversion efficiency for ?-PtSe2 (?16%) and ?-PtSSe (?18%) makes them promising candidates for solar water splitting applications. � 2022 The Royal Society of Chemistry.Item Stability and electronic properties of hybrid SnO bilayers: SnO/graphene and SnO/BN(Institute of Physics Publishing, 2017) Guo, Qing; Wang, Gaoxue; Kumar, Ashok; Pandey, RavindraVan der Waals structures based on two-dimensional materials have been considered as promising structures for novel nanoscale electronic devices. Two-dimensional SnO films which display intrinsic p-type semiconducting properties were fabricated recently. In this paper, we consider vertically stacked heterostructures consisting of a SnO monolayer with graphene or a BN monolayer to investigate their stability, electronic and transport properties using density functional theory. The calculated results find that the properties of the constituent monolayers are retained in these SnO-based heterostructures, and a p-type Schottky barrier is formed in the SnO/graphene heterostructure. Additionally, the Schottky barrier can be effectively controlled with an external electric field, which is useful characteristic for the van der Waals heterostructure-based electronic devices. In the SnO/BN heterostructure, the electronic properties of SnO are least affected by the insulating monolayer suggesting that the BN monolayer would be an ideal substrate for SnO-based nanoscale devices. ? 2017 IOP Publishing Ltd.Item Topological insulator behavior of WS 2 monolayer with square-octagon ring structure(American Institute of Physics Inc., 2016) Kumar, Ashok; Pandey, Ravindra; Ahluwalia, P. K.; Tankeshwar, K.We report electronic behavior of an allotrope of monolayer WS 2 with a square octagon ring structure, refereed to as (so-WS 2 ) within state-of-the-art density functional theory (DFT) calculations. The WS 2 monolayer shows semi-metallic characteristics with Dirac-cone like features around Cyrillic capital letter GHE. Unlike p-orbital's Dirac-cone in graphene, the Dirac-cone in the so-WS 2 monolayer originates from the d-electrons of the W atom in the lattice. Most interestingly, the spin-orbit interaction associated with d-electrons induce a finite band-gap that results into the metal-semiconductor transition and topological insulator-like behavior in the so-WS 2 monolayer. These characteristics suggest the so-WS 2 monolayer to be a promising candidate for the next-generation electronic and spintronics devices.Item Tunnelling Characteristics of Stone-Wales Defects in Monolayers of Sn and Group- V Elements(Institute of Physics (IOP), 2017) Jamdagni, Pooja; Kumar, Ashok; Thakur, Anil; Pandey, Ravindra; Ahluwalia, P. K.Topological defects in ultrathin layers are often formed during synthesis and processing, thereby, strongly influencing the electronic properties of the layered systems. For the monolayers of Sn and group-V elements, we report the results based on density functional theory determining the role of Stone-Wales (SW) defects in modifying their electronic properties. The calculated results find the electronic properties of Sn monolayer to be strongly dependent on the concentration of SW-defects e.g., defective stanene has nearly zero band gap (≈ 0.03 eV) for the defect concentration of 2.2 x 10<sup>13</sup> cm<sup>-2</sup> which opens up to 0.2 eV for the defect concentration of 3.7 x 10<sup>13</sup> cm<sup>-2</sup>. In contrast, SW-defects appear to induce conduction states in the semiconducting monolayers of group-V elements. These conduction states act as channels for electron tunnelling, and the calculated tunnelling characteristics show the highest differential conductance for the negative bias with the asymmetric current-voltage characteristics. On the other hand, the highest differential conductance was found for the positive bias in stanene. Simulated STM topographical images of stanene and group-V monolayers show distinctly different features in terms of their cross-sectional views and distance-height profiles. These distinctive features can serve as fingerprints to identify the topological defects in experiments for the monolayers of group-IV and group-V elements.