Browsing by Author "Paul, Atish T."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item U.S. FDA Approved Drugs from 2015-June 2020: A Perspective(American Chemical Society, 2021-02-22T00:00:00) Bhutani, Priyadeep; Joshi, Gaurav; Raja, Nivethitha; Bachhav, Namrata; Rajanna, Prabhakar K.; Bhutani, Hemant; Paul, Atish T.; Kumar, RajIn the present work, we report compilation and analysis of 245 drugs, including small and macromolecules approved by the U.S. FDA from 2015 until June 2020. Nearly 29% of the drugs were approved for the treatment of various types of cancers. Other major therapeutic areas of focus were infectious diseases (14%); neurological conditions (12%); and genetic, metabolic, and cardiovascular disorders (7-8% each). Itemization of the approved drugs according to the year of approval, sponsor, target, chemical class, major drug-metabolizing enzyme(s), route of administration/elimination, and drug-drug interaction liability (perpetrator or/and victim) is presented and discussed. An effort has been made to analyze the pharmacophores to identify the structural (e.g., aromatic, heterocycle, and aliphatic), elemental (e.g., boron, sulfur, fluorine, phosphorus, and deuterium), and functional group (e.g., nitro drugs) diversity among the approved drugs. Further, descriptor-based chemical space analysis of FDA approved drugs and several strategies utilized for optimizing metabolism leading to their discoveries have been emphasized. Finally, an analysis of drug-likeness for the approved drugs is presented. � 2021 American Chemical Society.Item Unanticipated Cleavage of 2-Nitrophenyl-Substituted N-Formyl Pyrazolines under Bechamp Conditions: Unveiling the Synthesis of 2-Aryl Quinolines and Their Mechanistic Exploration via DFT Studies(American Chemical Society, 2018) Joshi, Gaurav; Wani, Aabid Abdullah; Sharma, Sahil; Bhutani, Priyadeep; Bharatam, Prasad V.; Paul, Atish T.; Kumar, RajWe herein report for the first time an unusual decomposition of 2-nitrophenyl-substituted N-formyl pyrazolines under Bechamp reduction condition employed to yield 2-aryl quinolines exclusively instead of pyrazolo[1,5-c]quinazolines. The reaction investigation suggests acid-mediated cleavage of 1 followed by a retro-Michael addition, and a subsequent in situ intramolecular reductive cyclization through a modified Friedlander mechanism afforded 2-aryl quinolines (2) in good yields. The proposed mechanistic pathways were supported via experimental evidence and density functional theory studies. B3LYP/6-31+G(d) analysis indicated the involvement of trans-2-hydroxyaminochalcone as a key intermediate and its isomerization and cyclization, leading to unusual product formation.