Browsing by Author "Paul, Avijit Kumar"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Charge Separated One-Dimensional Hybrid Cobalt/Nickel Phosphonate Frameworks: A Facile Approach to Design Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions(American Chemical Society, 2021-09-30T00:00:00) Rom, Tanmay; Biswas, Rathindranath; Haldar, Krishna Kanta; Sarkar, Sourav; Saha, Uttam; Paul, Avijit KumarTwo new organoamine templated one-dimensional transition metal phosphonate compounds are synthesized, and their bifunctional electrocatalytic activities are examined in highly alkaline and acidic media. Compared with state-of-the-art materials, the cobalt phosphonate system is a new fabrication of sustainable and highly efficient catalysts toward electrochemical water splitting systems. � 2021 American Chemical Society. All rights reserved.Item Coupling Nonstoichiometric Zn0.76Co0.24S with NiCo2S4Composite Nanoflowers for Efficient Synergistic Electrocatalytic Oxygen and Hydrogen Evolution Reactions(American Chemical Society, 2022-12-15T00:00:00) Biswas, Rathindranath; Thakur, Pooja; Ahmed, Imtiaz; Rom, Tanmay; Ali, Mir Sahidul; Patil, Ranjit A.; Kumar, Bhupender; Som, Shubham; Chopra, Deepak; Paul, Avijit Kumar; Ma, Yuan-Ron; Haldar, Krishna KantaTransition-metal sulfide-based composite nanomaterials have garnered extensive interest not only for their unique morphological architectures but also for exploring as a noble-metal-free cost-effective, durable, and highly stable catalyst for electrochemical water splitting. In this work, we synthesized in situ nonstoichiometric Zn0.76Co0.24S with NiCo2S4binary composite flowers (Zn0.76Co0.24S/NiCo2S4) in one step by thermal decomposition of Zn2[PDTC]4and Ni[PDTC]2complexes by a solvothermal process in a nonaqueous medium from their molecular precursor, and their potential application in electrochemical oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) was investigated. Field-emission scanning electron microscopy and transmission electron microscopy analyses revealed the flower-shaped morphology of as-synthesized Zn0.76Co0.24S/NiCo2S4. Again, the structural and chemical compositions were confirmed through powder X-ray diffraction and X-ray photoelectron spectroscopy studies, respectively. The as-obtained 3D flower-type Zn0.76Co0.24S/NiCo2S4nanostructure was further subject to electrochemical OER and HER in alkaline and acidic media, respectively. Zn0.76Co0.24S/NiCo2S4showed low overpotential values of 248 mV (Tafel slope, 85 mV dec-1) and 141 mV (Tafel slope, 79 mV dec-1) for OER and HER activities, respectively, due to the synergistic effects of Zn0.76Co0.24S and NiCo2S4. Several long-term stability tests also affirmed that the Zn0.76Co0.24S/NiCo2S4composite nanostructure is a highly stable and efficient electrocatalyst toward OER and HER activities as compared to the recently reported superior bifunctional electrocatalysts as well as state-of-the-art materials. � 2023 American Chemical Society. All rights reserved.Item Vanadate Encapsulated Polyoxoborate Framework with [V12B18] Clusters: An Efficient Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reactions(American Chemical Society, 2022-07-11T00:00:00) Rom, Tanmay; Biswas, Rathindranath; Haldar, Krishna Kanta; Saha, Uttam; Rayaprol, Sudhindra; Paul, Avijit KumarWidespread contemporary attention has grown over the years in the search for a new functional and robust inorganic framework system with the advent of exciting applications. Herein, a facile strategy has been demonstrated for developing noble-metal-free bifunctional electrocatalysts by successfully preparing a polyoxovanadoborate framework compound, i.e., [Na10(H2O)18][(VO)12(?3-OH)6(B3O7)6]�5H2O, i.e., NVBO-I. Anionic vanadoborate clusters are interconnected through a cationic sodium aquated chain to form a three-dimensional framework structure. The compound exhibits remarkable bifunctional activity for oxygen and hydrogen evolution reactions over many well-engineered and state-of-art electrocatalysts under a similar catalytic environment. � 2022 American Chemical Society.