Browsing by Author "Prakash, Jyoti"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Design, Synthesis, and Pharmacological Evaluation of N-Propargylated Diphenylpyrimidines as Multitarget Directed Ligands for the Treatment of Alzheimer's Disease(American Chemical Society, 2022-07-07T00:00:00) Kumar, Bhupinder; Dwivedi, Ashish Ranjan; Arora, Tania; Raj, Khadga; Prashar, Vikash; Kumar, Vijay; Singh, Shamsher; Prakash, Jyoti; Kumar, VinodAlzheimer's disease (AD), a multifactorial complex neural disorder, is categorized with progressive memory loss and cognitive impairment as main clinical features. The multitarget directed ligand (MTDL) strategy is explored for the treatment of multifactorial diseases such as cancer and AD. Herein, we report the synthesis and screening of 24 N-propargyl-substituted diphenylpyrimidine derivatives as MTDLs against acetylcholine/butyrylcholine esterases and monoamine oxidase enzymes. In this series, VP1 showed the most potent MAO-B inhibitory activity with an IC50value of 0.04 � 0.002 ?M. VP15 with an IC50value of 0.04 � 0.003 ?M and a selectivity index of 626 (over BuChE) displayed the most potent AChE inhibitory activity in this series. In the reactive oxygen species (ROS) inhibition studies, VP1 reduced intercellular ROS levels in SH-SY5Y cells by 36%. This series of compounds also exhibited potent neuroprotective potential against 6-hydroxydopamine-induced neuronal damage in SH-SY5Y cells with up to 90% recovery. In the in vivo studies in the rats, the hydrochloride salt of VP15 was orally administered and found to cross the blood-brain barrier and reach the target site. VP15�HCl significantly attenuated the spatial memory impairment and improved the cognitive deficits in the mice. This series of compounds were found to be irreversible inhibitors and showed no cytotoxicity against neuronal cells. In in silico studies, the compounds attained thermodynamically stable orientation with complete occupancy at the active site of the receptors. Thus, N-propargyl-substituted diphenylpyrimidines displayed drug-like characteristics and have the potential to be developed as MTDLs for the effective treatment of AD. � 2022 American Chemical Society. All rights reserved.Item Microbial xylanases and their industrial application in pulp and paper biobleaching: a review(Springer Verlag, 2017) Walia, Abhishek; Guleria, Shiwani; Mehta, Preeti; Chauhan, Anjali; Prakash, Jyoti; Walia, A.; Guleria, S.; Mehta, P.; Chauhan, A.; Parkash, J.Xylanases are hydrolytic enzymes which cleave the ?-1, 4 backbone of the complex plant cell wall polysaccharide xylan. Xylan is the major hemicellulosic constituent found in soft and hard food. It is the next most abundant renewable polysaccharide after cellulose. Xylanases and associated debranching enzymes produced by a variety of microorganisms including bacteria, actinomycetes, yeast and fungi bring hydrolysis of hemicelluloses. Despite thorough knowledge of microbial xylanolytic systems, further studies are required to achieve a complete understanding of the mechanism of xylan degradation by xylanases produced by microorganisms and their promising use in pulp biobleaching. Cellulase-free xylanases are important in pulp biobleaching as alternatives to the use of toxic chlorinated compounds because of the environmental hazards and diseases caused by the release of the adsorbable organic halogens. In this review, we have focused on the studies of structural composition of xylan in plants, their classification, sources of xylanases, extremophilic xylanases, modes of fermentation for the production of xylanases, factors affecting xylanase production, statistical approaches such as Plackett Burman, Response Surface Methodology to enhance xylanase production, purification, characterization, molecular cloning and expression. Besides this, review has focused on the microbial enzyme complex involved in the complete breakdown of xylan and the studies on xylanase regulation and their potential industrial applications with special reference to pulp biobleaching, which is directly related to increasing pulp brightness and reduction in environmental pollution. ? 2017, The Author(s).Item Surface modification of kevlar fabric with a novel sulfonyl aryl containing monomer and its influence on inter yarn friction(SAGE Publications Ltd, 2023-05-04T00:00:00) Agarwal, Gaurav; Sharma, Indu; Prakash, Jyoti; Kumar, Pal Dinesh; Verma, Sanjeev KThe ballistic impact response of Kevlar textiles is significantly influenced by the friction between the yarns. It increases the dissipation of energy when yarns begin to displace relative to one another and it also results in to transfer of load to a larger area during ballistic impacts. In the present work, a novel sulfonyl aryl group containing monomer acrylic acid-2-(toluene sulphonyl amine)-ethyl ester (AATSAEE) was synthesized by a three-step process with ethanol amine and p-toluene sulfonic acid as starting material. The monomer was homopolymerized and grafted on Kevlar fabric by UV-induced free radical polymerization technique. Benzoyl peroxide (BPO) was used as initiator. Utilizing spectroscopic and thermal gravimetric methods, the monomer, precursor, and the homopolymer were characterized. The yarn pull-out tests on unmodified and AATSAEE grafted Kevlar fabrics were performed on Universal Tensile Tester at a steady speed of the upper jaw of 50�cm min?1. Increases in yarn pull out force have been noted with grafting of AATSAEE on Kevlar fabric. The peak force increases around 284% with grafting which indicates an increase in friction forces. When these yarns start to move apart from one another due to friction factors, the fabric�s energy dissipation increases and it may results in to increase in energy absorption at the time of ballistic impacts. � The Author(s) 2023.