Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Pramanik S."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Human-lymphocyte cell friendly starch-hydroxyapatite biodegradable composites: Hydrophilic mechanism, mechanical, and structural impact
    (John Wiley and Sons Inc., 2019) Pramanik S.; Agarwala P.; Vasudevan K.; Sarkar K.
    Biodegradable starch (Str) polymer was derived from potato, a plant-based natural carbohydrate polymers source, by one-pot synthesis. Hydroxyapatite (HA) was produced from goat bone by step sintering. The inexpensive starch/HA thin film composites were fabricated by customized spin coating. This study revealed that the hydrogen bond energy and distance have significant effect on glass transition temperature of the polymer. The 40 wt % HA contained starch (StrHA40) composite thin film showed excellent tensile strength (3.03 + ?0.03 MPa), elongation (21.5 + ?5.5%) and modulus (15.5 + ?0.2 MPa) closed to human skin. The in vitro swelling and biodegradation kinetics of pristine starch and pure HA has been controlled and improved by using suitable composition. This study postulated the probable water molecule-adsorption mechanisms of pristine starch and starch/HA composite films. The StrHA40 composite showed excellent biocompatibility to the human-blood derived lymphocyte cells. Therefore, the starch/HA thin film composite-based biodegradable scaffolds developed in the present study can be an excellent potential candidate for soft tissue regeneration and/or replacement applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 137, 48913.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify