Browsing by Author "Rai, Atma"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Evaluation of aluminium doped lanthanum ferrite based electrodes for supercapacitor design(Elsevier, 2014) Rai, Atma; Sharma, A. L.; Thakur, Awalendra K.; Thakur, A.K.We report Al doped ferrites La1 - xAlxFeO 3(x = 0, 0.3) as an electrode material for supercapacitor design. The La1 - xAlxFeO3 has been synthesized via chemical route. Structural and microstructural evolution has been carried out by X-ray diffraction (XRD) analysis and field emission scanning electron microscopy (FESEM) respectively. The electrode property of La 1 - xAlxFeO3 has been evaluated by using three electrode systems, glassy carbon (working), Pt (counter) and Ag/AgCl (reference electrode) with H2SO4 as the electrolyte. The Al doped ferrites show better cycle life (~ 250) and columbic efficiency (?) (~ 96%) in comparison to un-doped lanthanum ferrite sample. An increase in specific capacitance (~ 1.5 times) has also been observed in Al doped lanthanum ferrite in comparison to lanthanum ferrite. The maximum specific capacitance for Al doped lanthanum ferrite is ~ 260 F/g as compared to lanthanum ferrite ~ 200 F/g. The improved specific capacitance, columbic efficiency and cycle life of Al doped ferrites may be related to a relative decrease in equivalent series resistance (95 ? for LFO to 55 ? LAFO) and lower M.W. of Al doped lanthanum ferrite. ? 2013 Elsevier B.V.Item High efficient carbon coated TiO2electrode for ultra-capacitor applications(IOP Publishing Ltd, 2021-10-08T00:00:00) Tanwar, Shweta; Arya, Anil; Singh, Nirbhay; Yadav, Bal Chandra; Kumar, Vijay; Rai, Atma; Sharma, A.L.The present paper reports the investigation of structural, optical, chemical bonding, and electrical properties of the carbon black (CB)/TiO2 composite synthesized via the standard sol-gel method. The structural and morphological properties have been investigated using x-ray diffraction and also field emission scanning electron microscopy to confirm the formation of the nanocomposite. The electrochemical performance of the two-electrode symmetric fabricated supercapacitor (SC) has been examined by complex impedance spectroscopy, cyclic voltammetry, and galvanostatic charge-discharge (GCD). The electrode CT15 (15% TiO2 in CB matrix) shows a high specific capacitance of 236 F g-1 at scan rate 10 mV s-1. The GCD illustrates good specific capacitance retention of 90.3% after 10 000 cycles and with energy density and power density values as 22 Wh kg-1 and 625 kW kg-1 respectively (at 1 A g-1) in the voltage window of 1.2 V. The CT15 electrode cell demonstrates superior electrochemical performance as compared to other electrodes. Electrochemical impedance spectroscopy (EIS) demonstrates the capacitive behaviour of the composite electrode with a low value of resistance. The SC cell having optimum performance has been chosen to demonstrate the glowing red light emitting diode. A mechanism has also been proposed based on received data parameters to validate the SC performance. � 2021 IOP Publishing Ltd.