Browsing by Author "Rajkumar, M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Growth, characterizations, and the structural elucidation of diethyl-2-(3-oxoiso-1,3-dihydrobenzofuran-1-ylidene)malonate crystalline specimen for dielectric and electronic filters, thermal, optical, mechanical, and biomedical applications using conventional experimental and theoretical practices(Springer, 2021-08-18T00:00:00) Rajkumar, M.; Maalmarugan, J.; Flora, G.; Surendarnath, S.; Christy, S.; Periyathambi, P.; Kumar, Shashank; Patel, R.P.; Lobo, F. Dayana; Singh, Atul Kumar; Vimalan, M.; SenthilKannan, K.The single crystals of diethyl-2-(3-oxoiso-1,3-dihydrobenzofuran-1-ylidene) malonate (D23DYM) were grown successfully and efficiently by the standard slow evaporation method. The lattice cell parameters by XRD analysis also confirmed that the crystal system is Triclinic with the space group of P?. The FTIR spectrum portrays the presence of major and active functional groups in D23DYM. The thermal studies explained the two major weight losses between 107 and 153��C and 153 and 800��C for D23DYM have been observed. It is very clear that the hardness profile of D23DYM increases with increase in load which confirms reverse indentation size effect (RISE), and the work-hardening coefficient 'n' was observed as 2.936. The negative photoconductive nature as the predominant property and the dielectric constant and dielectric loss are perfectly and accurately measured and properly reported. The structural properties by theoretical manner confirm the elucidation as well as the confirmation for XRD data and the computational way of identifying the lattice bond length and bond angles using software. Diabetes mellitus is the commonly occurring disease associated with lifestyle and feeding behavior of D23DYM�organic crystals are tested by the use of molecular docking. The binding affinity values for the standard inhibitor A74DME and investigational compound D23DYM were ? 8.1�kJ/mole and ? 8.3�kJ/mole, respectively, and in future may get proceeded for in vivo animal analysis as well as anti-cancer work as the benzofuran is present in the crystal and is better diabetic- and cancer-opposing agent. � 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm(Academic Press, 2016) Jayashree, C.; Tamilarasan, K.; Rajkumar, M.; Arulazhagan, P.; Yogalakshmi, K.N.; Srikanth, M.; Banu, J.R.Tubular upflow microbial fuel cell (MFC) utilizing sea food processing wastewater was evaluated for wastewater treatment efficiency and power generation. At an organic loading rate (OLR) of 0.6 g d-1, the MFC accomplished total and soluble chemical oxygen demand (COD) removal of 83 and 95%, respectively. A maximum power density of 105 mW m-2 (2.21 W m-3) was achieved at an OLR of 2.57 g d-1. The predominant bacterial communities of anode biofilm were identified as RB1A (LC035455), RB1B (LC035456), RB1C (LC035457) and RB1E (LC035458). All the four strains belonged to genera Stenotrophomonas. The results of the study reaffirms that the seafood processing wastewater can be treated in an upflow MFC for simultaneous power generation and wastewater treatment. ? 2016 Elsevier Ltd.