Browsing by Author "Ramakrishna W."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Anti-inflammatory and immune-modulating effects of rice callus suspension culture (RCSC) and bioactive fractions in an in vitro inflammatory bowel disease model(Elsevier GmbH, 2019) Driscoll K.; Deshpande A.; Chapp A.; Li K.; Datta R.; Ramakrishna W.Background: Rice callus suspension culture (RCSC) has been shown to exhibit potent antiproliferative activity in multiple cancer cell lines. RCSC and its bioactive compounds can fill the need for drugs with no side effects. Hypothesis/Purpose: The anti-inflammatory potential of RCSC and its bioactive fractions on normal colon epithelial cell lines, was investigated. Study design: Three cell lines, InEpC, NCM356 and CCD841-CoN were treated with proinflammatory cytokines followed by RCSC. Cytoplasmic and nuclear ROS were assayed with fluorescent microscopy and flow cytometer. Expression analysis of immune-related genes was performed in RCSC-treated cell lines. RCSC was fractionated using column chromatography and HPLC. Pooled fractions 10–18 was used to test for antiproliferative activity using colon adenocarcinoma cell line, SW620 and anti-inflammatory activity using CCD841-CoN. Mass spectrometric analysis was performed to identify candidate compounds in four fractions. Results: RCSC treatment showed differential effects with higher cytoplasmic ROS levels in NCM356 and CCD841-CoN and lower ROS levels in InEpC. Nuclear generated ROS levels increased in all three treated cell lines. Flow cytometry analysis of propidium iodide stained cells indicated mitigation of cell death caused by inflammation in RCSC treated groups in both NCM356 and CCD841-CoN. Genes encoding transcription factors and cytokines were differentially regulated in NCM356 and CCD841-CoN cell lines treated with RCSC which provided insights into possible pathways. Analysis of pooled fractions 10–18 by HPLC identified 8 peaks. Cell viability assay with fractions 10–18 using SW620 showed that the number of viable cells were greatly reduced which was similar to 6X and 33X RCSC with very little effect on normal cells which similar to 1X RCSC. RCSC fractions increased nuclear and cytoplasmic ROS vs. both untreated and inflammatory control. Analysis of four fractions by mass spectrometry identified 4-deoxyphloridzin, 5?-methoxycurcumin, piceid and lupeol as candidate compounds which are likely to be responsible for the antiproliferative, anti-inflammatory and immune-regulating properties of RCSC. Conclusion: RCSC and its fractions showed anti-inflammatory activity on inflamed colon epithelial cells. Downstream target candidate genes which are likely to mediate RCSC effects were identified. Candidate compounds responsible for the antiproliferative and anti-inflammatory activity of RCSC and its fractions provide possible drug targets.Item Anti-inflammatory Effects of Northern Highbush Blueberry Extract on an In Vitro Inflammatory Bowel Disease Model(Routledge, 2019) Driscoll K.; Deshpande A.; Datta R.; Ramakrishna W.Blueberry anthocyanins have the ability to efficiently reach the GI tract and exhibit a broad range of biochemical effects. In the context of inflammatory bowel disease (IBD), they remain a promising complement to current IBD treatments. Here, we investigated the anti-inflammatory and antioxidant capabilities of Highbush blueberries in-vitro on two normal colon epithelial cell lines, NCM 356 and CCD 841 CoN using fluorescent microscopy and flow cytometry following stimulation with a pro-inflammatory cytokine cocktail. Treatment with blueberry extract revealed a significant decrease in nuclear and cytoplasmic generated reactive oxygen species (ROS) compared to controls. Additionally, the blueberry extract increased cell viability following treatment with the pro-inflammatory cytokine cocktail. A comparison with previous report on rice callus suspension culture (RCSC) revealed opposing trend with reference to the levels of nuclear and cytoplasmic ROS. It is likely that blueberry extract and RCSC employ different players and pathways to mitigate inflammation.Item Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration(Elsevier B.V., 2020) Ramakrishna W.; Rathore P.; Kumari R.; Yadav R.Marginal land is defined as land with poor soil characteristics and low crop productivity with no potential for profit. Poor soil quality due to the presence of xenobiotics or climate change is of great concern. Sustainable food production with increasing population is a challenge which becomes more difficult due to poor soil quality. Marginal soil can be made productive with the use of Plant Growth Promoting Bacteria (PGPB). This review outlines how PGPB can be used to improve marginal soil quality and its implications on agriculture, rhizoremediation, abiotic stress (drought, salinity and heavy metals) tolerance, carbon sequestration and production of biofuels. The feasibility of the idea is supported by several studies which showed maximal increase in the growth of plants inoculated with PGPB than to uninoculated plants grown in marginal soil when compared to the growth of plants inoculated with PGPB in healthy soil. The combination of PGPB and plants grown in marginal soil will serve as a green technology leading to the next green revolution, reduction in soil pollution and fossil fuel use, neutralizing abiotic stress and climate change effects.