Browsing by Author "Rana, Varnika"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Biotechnological attributes of biostimulants for relieving metal toxicity(Elsevier, 2023-08-04T00:00:00) Rana, Varnika; Kumar, Adarsh; Singh, Reetu; Kumar, VinayA global scourge, heavy metals (HMs) toxicity with high concentration causes reactive oxygen species (ROS) to attack key biological molecules and has emerged in the past few years, posing a serious threat to human lives and ecosystems and agriculture. In plants, HMs alter the genome and genetic structure and eventually affect their protein and enzyme activities which further impede cellular metabolism. Therefore the growing body of scientific research is emphasizing green synthesis, that is, biostimulants use as the nexus of biotechnology and fertilizer that can be viewed as novel, efficient, eco-friendly, and cost-effective tools to safeguard the detrimental effects on ecosystems. In this regard, this chapter aims to scrutinize the role of various biostimulants against abiotic stresses using various biostimulants including seaweed extracts, protein hydrolysates, humic acids, and fulvic acids. The microbial-based stimulants are also discussed in this chapter. A list of biological processes has also been highlighted as prime targets for removing heavy metal(loid)s toxicity using biotechnological interventions. The biostimulants enhance growth and improve stress tolerance ability in plants. A table of targeted biotechnological attributes is also provided. Recently, a steep rise in interest in biostimulants is driving the development of sustainable green economics and agricultural concepts, while increasing demand for new products and understanding their mechanism of action is increasing. Further, the increasing demand for innovative biostimulants products and an interest in understanding their mechanisms of action will drive HM-free green economics and agricultural sustainability in the coming days. � 2023 Elsevier Inc. All rights reserved.Item Biotechnological attributes of biostimulants for relieving metal toxicity(Elsevier, 2023-08-04T00:00:00) Rana, Varnika; Kumar, Adarsh; Singh, Reetu; Kumar, VinayA global scourge, heavy metals (HMs) toxicity with high concentration causes reactive oxygen species (ROS) to attack key biological molecules and has emerged in the past few years, posing a serious threat to human lives and ecosystems and agriculture. In plants, HMs alter the genome and genetic structure and eventually affect their protein and enzyme activities which further impede cellular metabolism. Therefore the growing body of scientific research is emphasizing green synthesis, that is, biostimulants use as the nexus of biotechnology and fertilizer that can be viewed as novel, efficient, eco-friendly, and cost-effective tools to safeguard the detrimental effects on ecosystems. In this regard, this chapter aims to scrutinize the role of various biostimulants against abiotic stresses using various biostimulants including seaweed extracts, protein hydrolysates, humic acids, and fulvic acids. The microbial-based stimulants are also discussed in this chapter. A list of biological processes has also been highlighted as prime targets for removing heavy metal(loid)s toxicity using biotechnological interventions. The biostimulants enhance growth and improve stress tolerance ability in plants. A table of targeted biotechnological attributes is also provided. Recently, a steep rise in interest in biostimulants is driving the development of sustainable green economics and agricultural concepts, while increasing demand for new products and understanding their mechanism of action is increasing. Further, the increasing demand for innovative biostimulants products and an interest in understanding their mechanisms of action will drive HM-free green economics and agricultural sustainability in the coming days. � 2023 Elsevier Inc. All rights reserved.Item Nanotechnology as a powerful tool in plant sciences: Recent developments, challenges and perspectives(Elsevier B.V., 2023-08-24T00:00:00) Kumari, Avnesh; Rana, Varnika; Yadav, Sudesh Kumar; Kumar, VinayIn today's global climate emergency, agricultural practices are becoming increasingly unsustainable. There are a number of alarming issues that require immediate action, including soil erosion, excessive use of natural resources, biodiversity loss, and an explosion of population. Although agriculture is heavily modernized, with traditional approaches, it is not possible to meet these challenges due to different landscapes, high nutrition demand, and a lack of technology. Aside from adversely affecting agriculture, chemical use has also resulted in serious health issues and undesirable effects on the ecosystem. As a result, nanotechnology will play a significant role in delivering a well-organized, sustainable agricultural industry by reducing chemicals and addressing existing problems. A quick disease diagnosis, improved plant nutrient absorption, and increased plant capability to absorb nutrients can be achieved by nanotechnology in the food and agriculture industries. Agricultural plants can be protected from insects and pests by nanotechnology acting as sensors to monitor soil and water quality. Despite their potential, researchers have been unable to understand how these compounds operate, since NPs either enhance growth or cause cytotoxicity depending on how much concentration is applied. In this article, we present the most promising nanoparticles used in abiotic stress management and gene editing of plants, as well as novel nanobionic approaches for improving plant functions and organelles. � 2023 The AuthorsItem Nanotechnology as a powerful tool in plant sciences: Recent developments, challenges and perspectives(Elsevier B.V., 2023-08-24T00:00:00) Kumari, Avnesh; Rana, Varnika; Yadav, Sudesh Kumar; Kumar, VinayIn today's global climate emergency, agricultural practices are becoming increasingly unsustainable. There are a number of alarming issues that require immediate action, including soil erosion, excessive use of natural resources, biodiversity loss, and an explosion of population. Although agriculture is heavily modernized, with traditional approaches, it is not possible to meet these challenges due to different landscapes, high nutrition demand, and a lack of technology. Aside from adversely affecting agriculture, chemical use has also resulted in serious health issues and undesirable effects on the ecosystem. As a result, nanotechnology will play a significant role in delivering a well-organized, sustainable agricultural industry by reducing chemicals and addressing existing problems. A quick disease diagnosis, improved plant nutrient absorption, and increased plant capability to absorb nutrients can be achieved by nanotechnology in the food and agriculture industries. Agricultural plants can be protected from insects and pests by nanotechnology acting as sensors to monitor soil and water quality. Despite their potential, researchers have been unable to understand how these compounds operate, since NPs either enhance growth or cause cytotoxicity depending on how much concentration is applied. In this article, we present the most promising nanoparticles used in abiotic stress management and gene editing of plants, as well as novel nanobionic approaches for improving plant functions and organelles. � 2023 The Authors