Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Rhuthuparna, M."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Natural Compound-Based Nanoparticles to Target Free Radicals in Cancer
    (Springer Singapore, 2022-09-28T00:00:00) Yadav, Umesh Prasad; Rhuthuparna, M.; Vasudeva, Kanika; Suman, Prabhat; Munshi, Anjana; Kumar, Santosh; Singh, Sandeep
    Cell proliferation and malignant transformation are enabled by genetic and epigenetic changes. During the malignancy process, malignant cells acquire distinguishing characteristics. Cancer cells have acquired the ability to generate more reactive oxygen species (ROS), resulting in high oxidative stress. ROS-mediated signaling is needed for cancer cell physiology, and high levels of ROS cause oxidative stress-induced cytotoxicity in cancer cells. To avoid ROS-mediated cytotoxicity, cancer cells modulate their redox state through various antioxidant mechanisms and keep their ROS levels below the threshold. Cancer treatment that targets oxidative stress is an appealing option. Many natural oxidative stress modulators and bioactive compounds have been used in the treatment of cancer. Conventional uptake of bioactive molecule is associated with lower bioavailability, solubility, unlikely biodistribution, and side effects. Traditional drug uptake is improved by nanoformulation, making it easier to overcome side effects, improve biodistribution, and extend drug duration time. Natural prooxidant-loaded nanoparticles efficiently carry prooxidant to the tumor site and selectively and efficiently induce oxidative stress-mediated cell death in cancer cells. � Springer Nature Singapore Pte Ltd. 2022.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify